Maryse Lapierre-Landry, Yehe Liu, Mahdi Bayat, D. L. Wilson, Michael W. Jenkins
{"title":"血管系统的数字标记:迈向无标签和无人工的血管分割","authors":"Maryse Lapierre-Landry, Yehe Liu, Mahdi Bayat, D. L. Wilson, Michael W. Jenkins","doi":"10.1364/boda.2023.dth1a.3","DOIUrl":null,"url":null,"abstract":"We propose digital labeling, a method for automated, three-dimensional segmentation of blood vessels without vascular contrast agents. Our deep learning approach greatly simplifies the sample preparation required for 3D microscopy and accelerate image post-processing.","PeriodicalId":111173,"journal":{"name":"Biophotonics Congress: Optics in the Life Sciences 2023 (OMA, NTM, BODA, OMP, BRAIN)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital Labeling of the Vasculature: Toward Label-Free and Labor-Free Vessel Segmentation\",\"authors\":\"Maryse Lapierre-Landry, Yehe Liu, Mahdi Bayat, D. L. Wilson, Michael W. Jenkins\",\"doi\":\"10.1364/boda.2023.dth1a.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose digital labeling, a method for automated, three-dimensional segmentation of blood vessels without vascular contrast agents. Our deep learning approach greatly simplifies the sample preparation required for 3D microscopy and accelerate image post-processing.\",\"PeriodicalId\":111173,\"journal\":{\"name\":\"Biophotonics Congress: Optics in the Life Sciences 2023 (OMA, NTM, BODA, OMP, BRAIN)\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophotonics Congress: Optics in the Life Sciences 2023 (OMA, NTM, BODA, OMP, BRAIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/boda.2023.dth1a.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophotonics Congress: Optics in the Life Sciences 2023 (OMA, NTM, BODA, OMP, BRAIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/boda.2023.dth1a.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Digital Labeling of the Vasculature: Toward Label-Free and Labor-Free Vessel Segmentation
We propose digital labeling, a method for automated, three-dimensional segmentation of blood vessels without vascular contrast agents. Our deep learning approach greatly simplifies the sample preparation required for 3D microscopy and accelerate image post-processing.