N. D. Md Sin, A. Shafura, M. H. Mamat, A. Mohamad, M. Rusop
{"title":"基于热化学气相沉积(CVD)合成SnO2纳米颗粒薄膜的湿度传感器","authors":"N. D. Md Sin, A. Shafura, M. H. Mamat, A. Mohamad, M. Rusop","doi":"10.1109/RSM.2013.6706530","DOIUrl":null,"url":null,"abstract":"SnO2 nanoparticle thin film has been synthesized by using thermal chemical vapor deposition (CVD). The SnO2 nanoparticle were growth on Au catalyst at different substrate temperature (400~550oC). The surface morphology of were characterized using field emission scanning electron microscopy (FESEM). The sensing properties of SnO2 nanoparticle thin film were examined using two point probe current-voltage (I-V) measurement (Keithley 2400). Heavily distribution of SnO2 nanoparticle thin film at 450°C that reveal from the FESEM image. The higher sensitivity of SnO2 nanoparticle thin film was performed good at 450°C compare to others samples with 45 ratio. The response and recovery of SnO2 nanoparticle thin film were 485 s and 24s respectively.","PeriodicalId":346255,"journal":{"name":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Humidity sensor based on SnO2 nanoparticle thin film synthesized by thermal chemical vapor deposition (CVD)\",\"authors\":\"N. D. Md Sin, A. Shafura, M. H. Mamat, A. Mohamad, M. Rusop\",\"doi\":\"10.1109/RSM.2013.6706530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SnO2 nanoparticle thin film has been synthesized by using thermal chemical vapor deposition (CVD). The SnO2 nanoparticle were growth on Au catalyst at different substrate temperature (400~550oC). The surface morphology of were characterized using field emission scanning electron microscopy (FESEM). The sensing properties of SnO2 nanoparticle thin film were examined using two point probe current-voltage (I-V) measurement (Keithley 2400). Heavily distribution of SnO2 nanoparticle thin film at 450°C that reveal from the FESEM image. The higher sensitivity of SnO2 nanoparticle thin film was performed good at 450°C compare to others samples with 45 ratio. The response and recovery of SnO2 nanoparticle thin film were 485 s and 24s respectively.\",\"PeriodicalId\":346255,\"journal\":{\"name\":\"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSM.2013.6706530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2013.6706530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Humidity sensor based on SnO2 nanoparticle thin film synthesized by thermal chemical vapor deposition (CVD)
SnO2 nanoparticle thin film has been synthesized by using thermal chemical vapor deposition (CVD). The SnO2 nanoparticle were growth on Au catalyst at different substrate temperature (400~550oC). The surface morphology of were characterized using field emission scanning electron microscopy (FESEM). The sensing properties of SnO2 nanoparticle thin film were examined using two point probe current-voltage (I-V) measurement (Keithley 2400). Heavily distribution of SnO2 nanoparticle thin film at 450°C that reveal from the FESEM image. The higher sensitivity of SnO2 nanoparticle thin film was performed good at 450°C compare to others samples with 45 ratio. The response and recovery of SnO2 nanoparticle thin film were 485 s and 24s respectively.