六种损失函数下无限制参数空间的贝叶斯后验估计

Ying-Ying Zhang
{"title":"六种损失函数下无限制参数空间的贝叶斯后验估计","authors":"Ying-Ying Zhang","doi":"10.5772/INTECHOPEN.88587","DOIUrl":null,"url":null,"abstract":"In this chapter, we have investigated six loss functions. In particular, the squared error loss function and the weighted squared error loss function that penalize overestimation and underestimation equally are recommended for the unrestricted parameter space (cid:1) ∞ ; ∞ ð Þ ; Stein ’ s loss function and the power-power loss function, which penalize gross overestimation and gross underestimation equally, are recommended for the positive restricted parameter space 0 ; ∞ ð Þ ; the power-log loss function and Zhang ’ s loss function, which penalize gross overestimation and gross underestimation equally, are recommended for 0 ; 1 ð Þ . Among the six Bayesian estimators that minimize the corresponding posterior expected losses (PELs), there exist three strings of inequalities. However, a string of inequalities among the six smallest PELs does not exist. Moreover, we summarize three hierarchical models where the unknown parameter of interest belongs to 0 ; ∞ ð Þ , that is, the hierarchical normal and inverse gamma model, the hierarchical Poisson and gamma model, and the hierarchical normal and normal-inverse-gamma model. In addition, we summarize two hierarchical models where the unknown parameter of interest belongs to 0 ; 1 ð Þ , that is, the beta-binomial model and the beta-negative binomial model. For empirical Bayesian analysis of the unknown parameter of interest of the hierarchical models, we use two common methods to obtain the estimators of the hyperparameters, that is, the moment method and the maximum likelihood estimator (MLE) method.","PeriodicalId":306321,"journal":{"name":"Bayesian Inference on Complicated Data","volume":"434 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Bayesian Posterior Estimators under Six Loss Functions for Unrestricted and Restricted Parameter Spaces\",\"authors\":\"Ying-Ying Zhang\",\"doi\":\"10.5772/INTECHOPEN.88587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, we have investigated six loss functions. In particular, the squared error loss function and the weighted squared error loss function that penalize overestimation and underestimation equally are recommended for the unrestricted parameter space (cid:1) ∞ ; ∞ ð Þ ; Stein ’ s loss function and the power-power loss function, which penalize gross overestimation and gross underestimation equally, are recommended for the positive restricted parameter space 0 ; ∞ ð Þ ; the power-log loss function and Zhang ’ s loss function, which penalize gross overestimation and gross underestimation equally, are recommended for 0 ; 1 ð Þ . Among the six Bayesian estimators that minimize the corresponding posterior expected losses (PELs), there exist three strings of inequalities. However, a string of inequalities among the six smallest PELs does not exist. Moreover, we summarize three hierarchical models where the unknown parameter of interest belongs to 0 ; ∞ ð Þ , that is, the hierarchical normal and inverse gamma model, the hierarchical Poisson and gamma model, and the hierarchical normal and normal-inverse-gamma model. In addition, we summarize two hierarchical models where the unknown parameter of interest belongs to 0 ; 1 ð Þ , that is, the beta-binomial model and the beta-negative binomial model. For empirical Bayesian analysis of the unknown parameter of interest of the hierarchical models, we use two common methods to obtain the estimators of the hyperparameters, that is, the moment method and the maximum likelihood estimator (MLE) method.\",\"PeriodicalId\":306321,\"journal\":{\"name\":\"Bayesian Inference on Complicated Data\",\"volume\":\"434 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Inference on Complicated Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.88587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Inference on Complicated Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.88587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本章中,我们研究了六种损失函数。特别是,对于无限制参数空间(cid:1)∞,推荐使用误差平方损失函数和加权误差平方损失函数对高估和低估进行同等惩罚;∞ð Þ;对于正受限参数空间0,推荐使用Stein损失函数和幂-幂损失函数,它们对严重高估和严重低估的惩罚相同;∞ð Þ;建议使用幂对数损失函数和张氏损失函数,它们对严重高估和严重低估的惩罚是一样的,为0;1 ð Þ。在使相应的后验期望损失最小的6个贝叶斯估计量中,存在3串不等式。然而,六个最小的PELs之间并不存在一系列的不平等。此外,我们总结了三个层次模型,其中感兴趣的未知参数属于0;∞ð Þ,即分层正态和反伽马模型,分层泊松和伽马模型,分层正态和正态-反伽马模型。此外,我们总结了两个层次模型,其中感兴趣的未知参数属于0;1 ð Þ即β -二项模型和β -负二项模型。对于层次模型的未知感兴趣参数的经验贝叶斯分析,我们使用两种常用的方法来获得超参数的估计量,即矩量法和极大似然估计(MLE)方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Bayesian Posterior Estimators under Six Loss Functions for Unrestricted and Restricted Parameter Spaces
In this chapter, we have investigated six loss functions. In particular, the squared error loss function and the weighted squared error loss function that penalize overestimation and underestimation equally are recommended for the unrestricted parameter space (cid:1) ∞ ; ∞ ð Þ ; Stein ’ s loss function and the power-power loss function, which penalize gross overestimation and gross underestimation equally, are recommended for the positive restricted parameter space 0 ; ∞ ð Þ ; the power-log loss function and Zhang ’ s loss function, which penalize gross overestimation and gross underestimation equally, are recommended for 0 ; 1 ð Þ . Among the six Bayesian estimators that minimize the corresponding posterior expected losses (PELs), there exist three strings of inequalities. However, a string of inequalities among the six smallest PELs does not exist. Moreover, we summarize three hierarchical models where the unknown parameter of interest belongs to 0 ; ∞ ð Þ , that is, the hierarchical normal and inverse gamma model, the hierarchical Poisson and gamma model, and the hierarchical normal and normal-inverse-gamma model. In addition, we summarize two hierarchical models where the unknown parameter of interest belongs to 0 ; 1 ð Þ , that is, the beta-binomial model and the beta-negative binomial model. For empirical Bayesian analysis of the unknown parameter of interest of the hierarchical models, we use two common methods to obtain the estimators of the hyperparameters, that is, the moment method and the maximum likelihood estimator (MLE) method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian Analysis for Random Effects Models Patient Bayesian Inference: Cloud-Based Healthcare Data Analysis Using Constraint-Based Adaptive Boost Algorithm A Brief Tour of Bayesian Sampling Methods A Review on the Exact Monte Carlo Simulation On the Impact of the Choice of the Prior in Bayesian Statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1