形状索引的关系直方图

B. Huet, E. Hancock
{"title":"形状索引的关系直方图","authors":"B. Huet, E. Hancock","doi":"10.1109/ICCV.1998.710773","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the retrieval of images from large databases based on their shape similarity to a query image. Our approach is based on two dimensional histograms that encode both the local and global geometric properties of the shapes. The pairwise attributes are the directed segment relative angle and directed relative position. The novelty of the proposed approach is to simultaneously use the relational and structural constraints, derived from an adjacency graph, to gate histogram contributions. We investigate the retrieval capabilities of the method for various queries. We also investigate the robustness of the method to segmentation errors. We conclude that a relational histogram of pairwise segment attributes presents a very efficient way of indexing into large databases. The optimal configuration is obtained when the local features are constructed from six neighbouring segments pairs. Moreover, a sensitivity analysis reveals that segmentation errors do not affect the retrieval performances.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Relational histograms for shape indexing\",\"authors\":\"B. Huet, E. Hancock\",\"doi\":\"10.1109/ICCV.1998.710773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the retrieval of images from large databases based on their shape similarity to a query image. Our approach is based on two dimensional histograms that encode both the local and global geometric properties of the shapes. The pairwise attributes are the directed segment relative angle and directed relative position. The novelty of the proposed approach is to simultaneously use the relational and structural constraints, derived from an adjacency graph, to gate histogram contributions. We investigate the retrieval capabilities of the method for various queries. We also investigate the robustness of the method to segmentation errors. We conclude that a relational histogram of pairwise segment attributes presents a very efficient way of indexing into large databases. The optimal configuration is obtained when the local features are constructed from six neighbouring segments pairs. Moreover, a sensitivity analysis reveals that segmentation errors do not affect the retrieval performances.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"156 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

本文研究了基于图像与查询图像的形状相似性从大型数据库中检索图像的问题。我们的方法基于二维直方图,对形状的局部和全局几何属性进行编码。两两属性是有向段相对角度和有向相对位置。该方法的新颖之处在于同时使用从邻接图派生的关系约束和结构约束来限制直方图的贡献。我们研究了该方法对各种查询的检索能力。我们还研究了该方法对分割误差的鲁棒性。我们得出结论,两两分段属性的关系直方图提供了一种非常有效的索引大型数据库的方法。由六个相邻的段对构造局部特征,得到最优配置。此外,灵敏度分析表明,分割错误不影响检索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relational histograms for shape indexing
This paper is concerned with the retrieval of images from large databases based on their shape similarity to a query image. Our approach is based on two dimensional histograms that encode both the local and global geometric properties of the shapes. The pairwise attributes are the directed segment relative angle and directed relative position. The novelty of the proposed approach is to simultaneously use the relational and structural constraints, derived from an adjacency graph, to gate histogram contributions. We investigate the retrieval capabilities of the method for various queries. We also investigate the robustness of the method to segmentation errors. We conclude that a relational histogram of pairwise segment attributes presents a very efficient way of indexing into large databases. The optimal configuration is obtained when the local features are constructed from six neighbouring segments pairs. Moreover, a sensitivity analysis reveals that segmentation errors do not affect the retrieval performances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing and evaluating interest points Snake pedals: geometric models with physics-based control Recovering epipolar geometry by reactive tabu search Utilization of stereo disparity and optical flow information for human interaction Intensity and feature based stereo matching by disparity parameterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1