{"title":"交通监控车辆图像的无监督超分辨率重建","authors":"Yaoyuan Liang","doi":"10.1145/3457682.3457734","DOIUrl":null,"url":null,"abstract":"The surveillance of public transportation is of great significance to improve public safety. However, the low resolution of vehicle images becomes a bottleneck in real scenarios. Since high-low resolution vehicle images pairs are not available in traffic surveillance scenarios, this paper aims to study the problem of unsupervised super-resolution to reconstruct the high quality vehicle image. Most of the existing super-resolution algorithms adopt pre-defined down-sampling methods for paired training, however, the models trained in this pattern cannot achieve the expected results in traffic surveillance scenarios. Therefore, we propose a super-resolution method that does not require paired data, and raise a novel down-sampling network to generate low-resolution images of vehicles close to the real-world data, and then utilize the synthesized pairs for pair-wise training. Our extensive experiments on private real-world dataset Vehicle5k demonstrate the advantages of the proposed approach over baseline approaches.","PeriodicalId":142045,"journal":{"name":"2021 13th International Conference on Machine Learning and Computing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unsupervised Super Resolution Reconstruction of Traffic Surveillance Vehicle Images\",\"authors\":\"Yaoyuan Liang\",\"doi\":\"10.1145/3457682.3457734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The surveillance of public transportation is of great significance to improve public safety. However, the low resolution of vehicle images becomes a bottleneck in real scenarios. Since high-low resolution vehicle images pairs are not available in traffic surveillance scenarios, this paper aims to study the problem of unsupervised super-resolution to reconstruct the high quality vehicle image. Most of the existing super-resolution algorithms adopt pre-defined down-sampling methods for paired training, however, the models trained in this pattern cannot achieve the expected results in traffic surveillance scenarios. Therefore, we propose a super-resolution method that does not require paired data, and raise a novel down-sampling network to generate low-resolution images of vehicles close to the real-world data, and then utilize the synthesized pairs for pair-wise training. Our extensive experiments on private real-world dataset Vehicle5k demonstrate the advantages of the proposed approach over baseline approaches.\",\"PeriodicalId\":142045,\"journal\":{\"name\":\"2021 13th International Conference on Machine Learning and Computing\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3457682.3457734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457682.3457734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unsupervised Super Resolution Reconstruction of Traffic Surveillance Vehicle Images
The surveillance of public transportation is of great significance to improve public safety. However, the low resolution of vehicle images becomes a bottleneck in real scenarios. Since high-low resolution vehicle images pairs are not available in traffic surveillance scenarios, this paper aims to study the problem of unsupervised super-resolution to reconstruct the high quality vehicle image. Most of the existing super-resolution algorithms adopt pre-defined down-sampling methods for paired training, however, the models trained in this pattern cannot achieve the expected results in traffic surveillance scenarios. Therefore, we propose a super-resolution method that does not require paired data, and raise a novel down-sampling network to generate low-resolution images of vehicles close to the real-world data, and then utilize the synthesized pairs for pair-wise training. Our extensive experiments on private real-world dataset Vehicle5k demonstrate the advantages of the proposed approach over baseline approaches.