{"title":"多指手抓握力优化的拉格朗日网络","authors":"W. Tang, Jun Wang","doi":"10.1109/IJCNN.2002.1005465","DOIUrl":null,"url":null,"abstract":"A Lagrangian network which is developed from the Lagrange multiplier method, is proposed for multifingered hand grasping force optimization. The Lagrangian network is a recurrent neural network and is shown to be capable of taking into account the nonlinearity of the friction constraints between contacts. By giving the external load and the finger joint torque limits to the neural network, it asymptotically converges to a set of optimal grasping forces. Simulation results show that the proposed approach gives a better quality of optimal grasping force compared to other approaches in the literature.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"30 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Lagrangian network for multifingered hand grasping force optimization\",\"authors\":\"W. Tang, Jun Wang\",\"doi\":\"10.1109/IJCNN.2002.1005465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Lagrangian network which is developed from the Lagrange multiplier method, is proposed for multifingered hand grasping force optimization. The Lagrangian network is a recurrent neural network and is shown to be capable of taking into account the nonlinearity of the friction constraints between contacts. By giving the external load and the finger joint torque limits to the neural network, it asymptotically converges to a set of optimal grasping forces. Simulation results show that the proposed approach gives a better quality of optimal grasping force compared to other approaches in the literature.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"30 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1005465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1005465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Lagrangian network for multifingered hand grasping force optimization
A Lagrangian network which is developed from the Lagrange multiplier method, is proposed for multifingered hand grasping force optimization. The Lagrangian network is a recurrent neural network and is shown to be capable of taking into account the nonlinearity of the friction constraints between contacts. By giving the external load and the finger joint torque limits to the neural network, it asymptotically converges to a set of optimal grasping forces. Simulation results show that the proposed approach gives a better quality of optimal grasping force compared to other approaches in the literature.