多指手抓握力优化的拉格朗日网络

W. Tang, Jun Wang
{"title":"多指手抓握力优化的拉格朗日网络","authors":"W. Tang, Jun Wang","doi":"10.1109/IJCNN.2002.1005465","DOIUrl":null,"url":null,"abstract":"A Lagrangian network which is developed from the Lagrange multiplier method, is proposed for multifingered hand grasping force optimization. The Lagrangian network is a recurrent neural network and is shown to be capable of taking into account the nonlinearity of the friction constraints between contacts. By giving the external load and the finger joint torque limits to the neural network, it asymptotically converges to a set of optimal grasping forces. Simulation results show that the proposed approach gives a better quality of optimal grasping force compared to other approaches in the literature.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"30 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Lagrangian network for multifingered hand grasping force optimization\",\"authors\":\"W. Tang, Jun Wang\",\"doi\":\"10.1109/IJCNN.2002.1005465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Lagrangian network which is developed from the Lagrange multiplier method, is proposed for multifingered hand grasping force optimization. The Lagrangian network is a recurrent neural network and is shown to be capable of taking into account the nonlinearity of the friction constraints between contacts. By giving the external load and the finger joint torque limits to the neural network, it asymptotically converges to a set of optimal grasping forces. Simulation results show that the proposed approach gives a better quality of optimal grasping force compared to other approaches in the literature.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"30 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1005465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1005465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在拉格朗日乘子法的基础上,提出了一种多指手抓握力优化的拉格朗日网络。拉格朗日网络是一种递归神经网络,能够考虑接触间摩擦约束的非线性。通过给神经网络给定外部载荷和手指关节力矩限制,神经网络逐渐收敛到一组最优抓取力。仿真结果表明,与文献中其他方法相比,该方法具有更好的最优抓取力质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Lagrangian network for multifingered hand grasping force optimization
A Lagrangian network which is developed from the Lagrange multiplier method, is proposed for multifingered hand grasping force optimization. The Lagrangian network is a recurrent neural network and is shown to be capable of taking into account the nonlinearity of the friction constraints between contacts. By giving the external load and the finger joint torque limits to the neural network, it asymptotically converges to a set of optimal grasping forces. Simulation results show that the proposed approach gives a better quality of optimal grasping force compared to other approaches in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CMAC-based fault diagnosis of power transformers Shape, orientation and size recognition of normal and ambiguous faces by a rotation and size spreading associative neural network Neuronal signal processing in Parkinson's disease Blind signal separation via simultaneous perturbation method Numerical solution of differential equations by radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1