{"title":"一种用于低功耗和有损网络的混合路由协议","authors":"Stephen Dawson-Haggerty, A. Tavakoli, D. Culler","doi":"10.1109/SMARTGRID.2010.5622053","DOIUrl":null,"url":null,"abstract":"Existing routing protocols for sensor networks ei- ther exclusively focus on collection-based traffic, or optimize for point-to-point traffic in a homogeneous network. As these networks become more general, a mix of these workloads in a heterogeneous setting is expected, while still abiding by the resource constraints of low- power and lossy networks (L2Ns). Our design leverages the predominantly two-tiered topology of L2N deployments, with capable border routers supplementing resource-starved in- network nodes, and optimizes for the typical traffic workloads consisting mainly of collection based traffic with specific instances of point-to-point traffic. We present Hydro, a hybrid routing protocol that combines local agility with centralized control. In-network nodes use distributed DAG formation to provide default routes to border routers, concurrently forming the foundation for triangle point- to-point routing. Border Routers build a global, but typically incomplete, view of the network using topology reports received from in- network nodes, and subsequently install optimized routes in the network for active point-to-point flows. Building on the vast existing literature on distributed DAG for- mation in L2Ns and centralized routing in large-scale networks, our contribution lies in the merging of these ideas in the form of a routing protocol that addresses the needs of L2Ns while remaining grounded in their inherent constraints. Evaluations across testbeds and deployments demonstrate the performance and functionality of Hydro across a variety of workloads and network conditions.","PeriodicalId":106908,"journal":{"name":"2010 First IEEE International Conference on Smart Grid Communications","volume":"423 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":"{\"title\":\"Hydro: A Hybrid Routing Protocol for Low-Power and Lossy Networks\",\"authors\":\"Stephen Dawson-Haggerty, A. Tavakoli, D. Culler\",\"doi\":\"10.1109/SMARTGRID.2010.5622053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing routing protocols for sensor networks ei- ther exclusively focus on collection-based traffic, or optimize for point-to-point traffic in a homogeneous network. As these networks become more general, a mix of these workloads in a heterogeneous setting is expected, while still abiding by the resource constraints of low- power and lossy networks (L2Ns). Our design leverages the predominantly two-tiered topology of L2N deployments, with capable border routers supplementing resource-starved in- network nodes, and optimizes for the typical traffic workloads consisting mainly of collection based traffic with specific instances of point-to-point traffic. We present Hydro, a hybrid routing protocol that combines local agility with centralized control. In-network nodes use distributed DAG formation to provide default routes to border routers, concurrently forming the foundation for triangle point- to-point routing. Border Routers build a global, but typically incomplete, view of the network using topology reports received from in- network nodes, and subsequently install optimized routes in the network for active point-to-point flows. Building on the vast existing literature on distributed DAG for- mation in L2Ns and centralized routing in large-scale networks, our contribution lies in the merging of these ideas in the form of a routing protocol that addresses the needs of L2Ns while remaining grounded in their inherent constraints. Evaluations across testbeds and deployments demonstrate the performance and functionality of Hydro across a variety of workloads and network conditions.\",\"PeriodicalId\":106908,\"journal\":{\"name\":\"2010 First IEEE International Conference on Smart Grid Communications\",\"volume\":\"423 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"118\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 First IEEE International Conference on Smart Grid Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTGRID.2010.5622053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 First IEEE International Conference on Smart Grid Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTGRID.2010.5622053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydro: A Hybrid Routing Protocol for Low-Power and Lossy Networks
Existing routing protocols for sensor networks ei- ther exclusively focus on collection-based traffic, or optimize for point-to-point traffic in a homogeneous network. As these networks become more general, a mix of these workloads in a heterogeneous setting is expected, while still abiding by the resource constraints of low- power and lossy networks (L2Ns). Our design leverages the predominantly two-tiered topology of L2N deployments, with capable border routers supplementing resource-starved in- network nodes, and optimizes for the typical traffic workloads consisting mainly of collection based traffic with specific instances of point-to-point traffic. We present Hydro, a hybrid routing protocol that combines local agility with centralized control. In-network nodes use distributed DAG formation to provide default routes to border routers, concurrently forming the foundation for triangle point- to-point routing. Border Routers build a global, but typically incomplete, view of the network using topology reports received from in- network nodes, and subsequently install optimized routes in the network for active point-to-point flows. Building on the vast existing literature on distributed DAG for- mation in L2Ns and centralized routing in large-scale networks, our contribution lies in the merging of these ideas in the form of a routing protocol that addresses the needs of L2Ns while remaining grounded in their inherent constraints. Evaluations across testbeds and deployments demonstrate the performance and functionality of Hydro across a variety of workloads and network conditions.