{"title":"力反馈控制对心脏手术中生理运动补偿的实时实验","authors":"Zeineb Zarrouk, A. Chemori, P. Poignet","doi":"10.1109/ICOSC.2013.6750972","DOIUrl":null,"url":null,"abstract":"Performing a beating heart surgery presents a real challenge to surgeons because of physiological motions. In this paper, a robotized solution for motion compensation based on a force feedback control architecture with two control loops is proposed. The inner loop consists in a nonlinear state feedback and the outer loop consists in a PID controller. The proposed control architecture uses the measurements of the contact efforts applied by the surgical tool on its environment to ensure force feedback. No a priori information about motion characteristics is necessary. The effectiveness of the global architecture is tested in simulation and experimentally on the D2M2 robot. The obtained results show the ability of the robot to compensate 1D motions.","PeriodicalId":199135,"journal":{"name":"3rd International Conference on Systems and Control","volume":"10 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Force feedback control for compensation of physiological motions in beating heart surgery with real-time experiments\",\"authors\":\"Zeineb Zarrouk, A. Chemori, P. Poignet\",\"doi\":\"10.1109/ICOSC.2013.6750972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performing a beating heart surgery presents a real challenge to surgeons because of physiological motions. In this paper, a robotized solution for motion compensation based on a force feedback control architecture with two control loops is proposed. The inner loop consists in a nonlinear state feedback and the outer loop consists in a PID controller. The proposed control architecture uses the measurements of the contact efforts applied by the surgical tool on its environment to ensure force feedback. No a priori information about motion characteristics is necessary. The effectiveness of the global architecture is tested in simulation and experimentally on the D2M2 robot. The obtained results show the ability of the robot to compensate 1D motions.\",\"PeriodicalId\":199135,\"journal\":{\"name\":\"3rd International Conference on Systems and Control\",\"volume\":\"10 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3rd International Conference on Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSC.2013.6750972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Conference on Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2013.6750972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Force feedback control for compensation of physiological motions in beating heart surgery with real-time experiments
Performing a beating heart surgery presents a real challenge to surgeons because of physiological motions. In this paper, a robotized solution for motion compensation based on a force feedback control architecture with two control loops is proposed. The inner loop consists in a nonlinear state feedback and the outer loop consists in a PID controller. The proposed control architecture uses the measurements of the contact efforts applied by the surgical tool on its environment to ensure force feedback. No a priori information about motion characteristics is necessary. The effectiveness of the global architecture is tested in simulation and experimentally on the D2M2 robot. The obtained results show the ability of the robot to compensate 1D motions.