泰米尔字母子集手写体字符识别的混合分类

Aditya Viswanathan Kaliappan, David Chapman
{"title":"泰米尔字母子集手写体字符识别的混合分类","authors":"Aditya Viswanathan Kaliappan, David Chapman","doi":"10.1109/CiSt49399.2021.9357190","DOIUrl":null,"url":null,"abstract":"In this paper, we present a hybrid classification approach using a weighted contribution of feature point-based and convolutional neural network (CNN) methods to improve classification and recognition of handwritten Tamil vowels. We explore different feature point methods, including BRISK, ORB, and KAZE, such that we featurize input images with a visual bag-of-words representation before applying standard machine learning classifiers including a multi-layer perceptron. We also consider different CNN configurations for this classification task. We find that since feature point methods and CNNs learn different representations of underlying input images, our hybrid classifier outperforms the individual feature point and CNN classifiers with respect to accuracy, precision, recall, and F1 score.","PeriodicalId":253233,"journal":{"name":"2020 6th IEEE Congress on Information Science and Technology (CiSt)","volume":"211 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hybrid Classification for Handwritten Character Recognition of a Subset of the Tamil Alphabet\",\"authors\":\"Aditya Viswanathan Kaliappan, David Chapman\",\"doi\":\"10.1109/CiSt49399.2021.9357190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a hybrid classification approach using a weighted contribution of feature point-based and convolutional neural network (CNN) methods to improve classification and recognition of handwritten Tamil vowels. We explore different feature point methods, including BRISK, ORB, and KAZE, such that we featurize input images with a visual bag-of-words representation before applying standard machine learning classifiers including a multi-layer perceptron. We also consider different CNN configurations for this classification task. We find that since feature point methods and CNNs learn different representations of underlying input images, our hybrid classifier outperforms the individual feature point and CNN classifiers with respect to accuracy, precision, recall, and F1 score.\",\"PeriodicalId\":253233,\"journal\":{\"name\":\"2020 6th IEEE Congress on Information Science and Technology (CiSt)\",\"volume\":\"211 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 6th IEEE Congress on Information Science and Technology (CiSt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CiSt49399.2021.9357190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th IEEE Congress on Information Science and Technology (CiSt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CiSt49399.2021.9357190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种混合分类方法,使用基于特征点和卷积神经网络(CNN)的加权贡献方法来改进手写泰米尔元音的分类和识别。我们探索了不同的特征点方法,包括BRISK、ORB和KAZE,这样我们就可以在应用包括多层感知器在内的标准机器学习分类器之前,用视觉词袋表示来表征输入图像。我们还为这个分类任务考虑了不同的CNN配置。我们发现,由于特征点方法和CNN学习底层输入图像的不同表示,我们的混合分类器在准确率、精密度、召回率和F1分数方面优于单个特征点和CNN分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Classification for Handwritten Character Recognition of a Subset of the Tamil Alphabet
In this paper, we present a hybrid classification approach using a weighted contribution of feature point-based and convolutional neural network (CNN) methods to improve classification and recognition of handwritten Tamil vowels. We explore different feature point methods, including BRISK, ORB, and KAZE, such that we featurize input images with a visual bag-of-words representation before applying standard machine learning classifiers including a multi-layer perceptron. We also consider different CNN configurations for this classification task. We find that since feature point methods and CNNs learn different representations of underlying input images, our hybrid classifier outperforms the individual feature point and CNN classifiers with respect to accuracy, precision, recall, and F1 score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid CNN-CRF Inference Models for 3D Mesh Segmentation An Effective Packet Loss Recovery Scheme Using a Cache Server in IPTV Multicast Service TermInteract: An Online Tool for Terminologists Aimed at Providing Terminology Quality Metrics Proposing solutions with an application server implementing telephony services in the IMS network Corpus and Baseline Model for Domain-Specific Entity Recognition in German
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1