Shaad Mahmud, Honggang Wang, Yong K Kim, Dapeng Li
{"title":"无线体域网络喷墨印刷绿色天线及扭曲效应的研制","authors":"Shaad Mahmud, Honggang Wang, Yong K Kim, Dapeng Li","doi":"10.1109/BSN.2015.7299415","DOIUrl":null,"url":null,"abstract":"A miniaturized monopole antenna was designed and fabricated on an organic paper and LCP material for wireless body area network. Compared with previous work, the proposed design has 20% reduction of the antenna size but with enhanced performance. The effects of the compact coplanar antenna under different twisting conditions is described in this paper. The proposed antennas are simulated and designed on an organic paper and a Liquid Crystal Polymer (LCP) substrate with dielectric constant Dr= 3.4 and thickness 15μm and 5μm respectively, occupying the area of 22×30mm2. A detailed discussion about radiation pattern, Gain, antenna efficiency and power pattern is given with the help of experimental and numerical results.","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Development of an inkjet printed green antenna and twisting effect for wireless body area network\",\"authors\":\"Shaad Mahmud, Honggang Wang, Yong K Kim, Dapeng Li\",\"doi\":\"10.1109/BSN.2015.7299415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A miniaturized monopole antenna was designed and fabricated on an organic paper and LCP material for wireless body area network. Compared with previous work, the proposed design has 20% reduction of the antenna size but with enhanced performance. The effects of the compact coplanar antenna under different twisting conditions is described in this paper. The proposed antennas are simulated and designed on an organic paper and a Liquid Crystal Polymer (LCP) substrate with dielectric constant Dr= 3.4 and thickness 15μm and 5μm respectively, occupying the area of 22×30mm2. A detailed discussion about radiation pattern, Gain, antenna efficiency and power pattern is given with the help of experimental and numerical results.\",\"PeriodicalId\":447934,\"journal\":{\"name\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2015.7299415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of an inkjet printed green antenna and twisting effect for wireless body area network
A miniaturized monopole antenna was designed and fabricated on an organic paper and LCP material for wireless body area network. Compared with previous work, the proposed design has 20% reduction of the antenna size but with enhanced performance. The effects of the compact coplanar antenna under different twisting conditions is described in this paper. The proposed antennas are simulated and designed on an organic paper and a Liquid Crystal Polymer (LCP) substrate with dielectric constant Dr= 3.4 and thickness 15μm and 5μm respectively, occupying the area of 22×30mm2. A detailed discussion about radiation pattern, Gain, antenna efficiency and power pattern is given with the help of experimental and numerical results.