利用形态扩张建模不精确和双极代数和拓扑关系

I. Bloch
{"title":"利用形态扩张建模不精确和双极代数和拓扑关系","authors":"I. Bloch","doi":"10.1515/mathm-2020-0107","DOIUrl":null,"url":null,"abstract":"Abstract In many domains of information processing, such as knowledge representation, preference modeling, argumentation, multi-criteria decision analysis, spatial reasoning, both vagueness, or imprecision, and bipolarity, encompassing positive and negative parts of information, are core features of the information to be modeled and processed. This led to the development of the concept of bipolar fuzzy sets, and of associated models and tools, such as fusion and aggregation, similarity and distances, mathematical morphology. Here we propose to extend these tools by defining algebraic and topological relations between bipolar fuzzy sets, including intersection, inclusion, adjacency and RCC relations widely used in mereotopology, based on bipolar connectives (in a logical sense) and on mathematical morphology operators. These definitions are shown to have the desired properties and to be consistent with existing definitions on sets and fuzzy sets, while providing an additional bipolar feature. The proposed relations can be used for instance for preference modeling or spatial reasoning. They apply more generally to any type of functions taking values in a poset or a complete lattice, such as L-fuzzy sets.","PeriodicalId":244328,"journal":{"name":"Mathematical Morphology - Theory and Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Imprecise and Bipolar Algebraic and Topological Relations using Morphological Dilations\",\"authors\":\"I. Bloch\",\"doi\":\"10.1515/mathm-2020-0107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In many domains of information processing, such as knowledge representation, preference modeling, argumentation, multi-criteria decision analysis, spatial reasoning, both vagueness, or imprecision, and bipolarity, encompassing positive and negative parts of information, are core features of the information to be modeled and processed. This led to the development of the concept of bipolar fuzzy sets, and of associated models and tools, such as fusion and aggregation, similarity and distances, mathematical morphology. Here we propose to extend these tools by defining algebraic and topological relations between bipolar fuzzy sets, including intersection, inclusion, adjacency and RCC relations widely used in mereotopology, based on bipolar connectives (in a logical sense) and on mathematical morphology operators. These definitions are shown to have the desired properties and to be consistent with existing definitions on sets and fuzzy sets, while providing an additional bipolar feature. The proposed relations can be used for instance for preference modeling or spatial reasoning. They apply more generally to any type of functions taking values in a poset or a complete lattice, such as L-fuzzy sets.\",\"PeriodicalId\":244328,\"journal\":{\"name\":\"Mathematical Morphology - Theory and Applications\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Morphology - Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mathm-2020-0107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Morphology - Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mathm-2020-0107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在信息处理的许多领域,如知识表示、偏好建模、论证、多准则决策分析、空间推理等,模糊性或不精确性以及包含信息的积极部分和消极部分的两极化是要建模和处理的信息的核心特征。这导致了双极模糊集概念的发展,以及相关的模型和工具,如融合和聚集,相似性和距离,数学形态学。在这里,我们建议通过定义双极模糊集之间的代数和拓扑关系来扩展这些工具,包括在元拓扑中广泛使用的交、包含、邻接和RCC关系,基于双极连接词(在逻辑意义上)和数学形态学算子。这些定义具有所需的属性,并且与集和模糊集的现有定义一致,同时提供了额外的双极特性。所提出的关系可用于例如偏好建模或空间推理。它们更普遍地适用于在偏置集或完全格中取值的任何类型的函数,例如l -模糊集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Imprecise and Bipolar Algebraic and Topological Relations using Morphological Dilations
Abstract In many domains of information processing, such as knowledge representation, preference modeling, argumentation, multi-criteria decision analysis, spatial reasoning, both vagueness, or imprecision, and bipolarity, encompassing positive and negative parts of information, are core features of the information to be modeled and processed. This led to the development of the concept of bipolar fuzzy sets, and of associated models and tools, such as fusion and aggregation, similarity and distances, mathematical morphology. Here we propose to extend these tools by defining algebraic and topological relations between bipolar fuzzy sets, including intersection, inclusion, adjacency and RCC relations widely used in mereotopology, based on bipolar connectives (in a logical sense) and on mathematical morphology operators. These definitions are shown to have the desired properties and to be consistent with existing definitions on sets and fuzzy sets, while providing an additional bipolar feature. The proposed relations can be used for instance for preference modeling or spatial reasoning. They apply more generally to any type of functions taking values in a poset or a complete lattice, such as L-fuzzy sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Imprecise and Bipolar Algebraic and Topological Relations using Morphological Dilations Robust Object Detection in Colour Images Using a Multivariate Percentage Occupancy Hit-or-Miss Transform Efficient Hierarchical Multi-Object Segmentation in Layered Graphs Mathematical morphology based on stochastic permutation orderings Median-Tree: An Efficient Counterpart of Tree-of-Shapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1