基于立体视觉的目标检测与识别系统

P. Aswin, J. Chandana, Seethal Reghunath, Maya Menon
{"title":"基于立体视觉的目标检测与识别系统","authors":"P. Aswin, J. Chandana, Seethal Reghunath, Maya Menon","doi":"10.1109/ICOEI.2019.8862588","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for detecting and recognizing the object using Stereo Vision, Scale-Invariant Feature Transform (SIFT) and Fast library for approximate Nearest Neighbors (FLANN) concept with its implementation on an embedded system. Using stereo vision on the microprocessor Raspberry Pi, the implemented system takes the two images produced as input, calculates the disparity map which provides the relative depth information. Using this map and the Scale-Invariant Feature Transform (SIFT), features are obtained and matched with a database having large collection of images. This implementation uses Fast Library for Approximate Nearest Neighbors (FLANN), which unlike the Brute-Force matching algorithm can support large databases. This system gives a voice output when the object is recognized by text to speech conversion.","PeriodicalId":212501,"journal":{"name":"2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stereo-Vision Based System For Object Detection And Recognition\",\"authors\":\"P. Aswin, J. Chandana, Seethal Reghunath, Maya Menon\",\"doi\":\"10.1109/ICOEI.2019.8862588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method for detecting and recognizing the object using Stereo Vision, Scale-Invariant Feature Transform (SIFT) and Fast library for approximate Nearest Neighbors (FLANN) concept with its implementation on an embedded system. Using stereo vision on the microprocessor Raspberry Pi, the implemented system takes the two images produced as input, calculates the disparity map which provides the relative depth information. Using this map and the Scale-Invariant Feature Transform (SIFT), features are obtained and matched with a database having large collection of images. This implementation uses Fast Library for Approximate Nearest Neighbors (FLANN), which unlike the Brute-Force matching algorithm can support large databases. This system gives a voice output when the object is recognized by text to speech conversion.\",\"PeriodicalId\":212501,\"journal\":{\"name\":\"2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOEI.2019.8862588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOEI.2019.8862588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种利用立体视觉、尺度不变特征变换(SIFT)和快速近似近邻库(FLANN)概念进行目标检测和识别的方法,并在嵌入式系统上实现。实现的系统利用树莓派微处理器上的立体视觉,将生成的两幅图像作为输入,计算视差图,从而提供相对深度信息。利用该映射和比例不变特征变换(SIFT),获得特征并与具有大量图像集的数据库进行匹配。该实现采用了FLANN (Fast Library for Approximate Nearest Neighbors)算法,与蛮力匹配算法不同,FLANN可以支持大型数据库。该系统通过文本到语音的转换来识别对象时,给出语音输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stereo-Vision Based System For Object Detection And Recognition
This paper proposes a method for detecting and recognizing the object using Stereo Vision, Scale-Invariant Feature Transform (SIFT) and Fast library for approximate Nearest Neighbors (FLANN) concept with its implementation on an embedded system. Using stereo vision on the microprocessor Raspberry Pi, the implemented system takes the two images produced as input, calculates the disparity map which provides the relative depth information. Using this map and the Scale-Invariant Feature Transform (SIFT), features are obtained and matched with a database having large collection of images. This implementation uses Fast Library for Approximate Nearest Neighbors (FLANN), which unlike the Brute-Force matching algorithm can support large databases. This system gives a voice output when the object is recognized by text to speech conversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artery and Vein classification for hypertensive retinopathy Biometric Personal Iris Recognition from an Image at Long Distance Iris Recognition Using Visible Wavelength Light Source and Near Infrared Light Source Image Database: A Short Survey□ Brain Computer Interface Based Smart Environment Control IoT Based Smart Gas Management System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1