用于胃肠道内窥镜检查的高效计算机辅助诊断框架

M. Riegler, Konstantin Pogorelov, P. Halvorsen, T. Lange, C. Griwodz, P. Schmidt, S. Eskeland, Dag Johansen
{"title":"用于胃肠道内窥镜检查的高效计算机辅助诊断框架","authors":"M. Riegler, Konstantin Pogorelov, P. Halvorsen, T. Lange, C. Griwodz, P. Schmidt, S. Eskeland, Dag Johansen","doi":"10.1109/CBMI.2016.7500257","DOIUrl":null,"url":null,"abstract":"Analysis of medical videos for detection of abnormalities like lesions and diseases requires both high precision and recall but also real-time processing for live feedback during standard colonoscopies and scalability for massive population based screening, which can be done using a capsular video endoscope. Existing related work in this field does not provide the necessary combination of detection accuracy and performance. In this paper, a multimedia system is presented where the aim is to tackle automatic analysis of videos from the human gastrointestinal (GI) tract. The system includes the whole pipeline from data collection, processing and analysis, to visualization. The system combines filters using machine learning, image recognition and extraction of global and local image features, and it is built in a modular way, so that it can easily be extended. At the same time, it is developed for efficient processing in order to provide real-time feedback to the doctor. Initial experiments show that our system has detection and localisation accuracy at least as good as existing systems, but it stands out in terms of real-time performance and low resource consumption for scalability.","PeriodicalId":356608,"journal":{"name":"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"362 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"EIR — Efficient computer aided diagnosis framework for gastrointestinal endoscopies\",\"authors\":\"M. Riegler, Konstantin Pogorelov, P. Halvorsen, T. Lange, C. Griwodz, P. Schmidt, S. Eskeland, Dag Johansen\",\"doi\":\"10.1109/CBMI.2016.7500257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of medical videos for detection of abnormalities like lesions and diseases requires both high precision and recall but also real-time processing for live feedback during standard colonoscopies and scalability for massive population based screening, which can be done using a capsular video endoscope. Existing related work in this field does not provide the necessary combination of detection accuracy and performance. In this paper, a multimedia system is presented where the aim is to tackle automatic analysis of videos from the human gastrointestinal (GI) tract. The system includes the whole pipeline from data collection, processing and analysis, to visualization. The system combines filters using machine learning, image recognition and extraction of global and local image features, and it is built in a modular way, so that it can easily be extended. At the same time, it is developed for efficient processing in order to provide real-time feedback to the doctor. Initial experiments show that our system has detection and localisation accuracy at least as good as existing systems, but it stands out in terms of real-time performance and low resource consumption for scalability.\",\"PeriodicalId\":356608,\"journal\":{\"name\":\"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"362 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2016.7500257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2016.7500257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

对医学视频进行分析以检测病变和疾病等异常情况,不仅需要高精度和召回率,还需要在标准结肠镜检查期间实时处理实时反馈,并且可以使用荚膜视频内窥镜进行大规模人群筛查。该领域现有的相关工作没有提供检测精度和性能的必要结合。在本文中,提出了一个多媒体系统,其目的是解决自动分析视频从人体胃肠道(GI)。该系统包括从数据采集、处理、分析到可视化的整个流程。该系统结合了使用机器学习、图像识别和提取全局和局部图像特征的过滤器,并以模块化的方式构建,因此可以很容易地扩展。同时,为了向医生提供实时反馈,它被开发为高效处理。初步实验表明,我们的系统具有至少与现有系统一样好的检测和定位精度,但它在实时性能和低资源消耗方面具有突出的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EIR — Efficient computer aided diagnosis framework for gastrointestinal endoscopies
Analysis of medical videos for detection of abnormalities like lesions and diseases requires both high precision and recall but also real-time processing for live feedback during standard colonoscopies and scalability for massive population based screening, which can be done using a capsular video endoscope. Existing related work in this field does not provide the necessary combination of detection accuracy and performance. In this paper, a multimedia system is presented where the aim is to tackle automatic analysis of videos from the human gastrointestinal (GI) tract. The system includes the whole pipeline from data collection, processing and analysis, to visualization. The system combines filters using machine learning, image recognition and extraction of global and local image features, and it is built in a modular way, so that it can easily be extended. At the same time, it is developed for efficient processing in order to provide real-time feedback to the doctor. Initial experiments show that our system has detection and localisation accuracy at least as good as existing systems, but it stands out in terms of real-time performance and low resource consumption for scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Music Tweet Map: A browsing interface to explore the microblogosphere of music A novel architecture of semantic web reasoner based on transferable belief model Simple tag-based subclass representations for visually-varied image classes Crowdsourcing as self-fulfilling prophecy: Influence of discarding workers in subjective assessment tasks EIR — Efficient computer aided diagnosis framework for gastrointestinal endoscopies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1