几种优化问题的元启发式算法的比较研究

Reddad Hakima, Zemzami Maria, E. Norelislam, Hmina Nabil
{"title":"几种优化问题的元启发式算法的比较研究","authors":"Reddad Hakima, Zemzami Maria, E. Norelislam, Hmina Nabil","doi":"10.1109/ICOA55659.2022.9934204","DOIUrl":null,"url":null,"abstract":"This article presents a study of a recent metaheuristic optimization method, the search and rescue algorithm (SAR), against four known metaheuristic optimization algorithms, the Salp Swarm Algorithm (SSA), the Cuckoo Search Algorithm (CSA), the Firefly Algorithm (FA), and the Grey Wolf Optimization Algorithm (GWO). An evaluation of its performance against the other algorithms will be performed by the means of thirteen mathematical benchmarks functions, afterwards a study of the optimization of five multi-dimensional mathematical problems will be investigated, the optimization of the Dejoung function, the Cosine Mixture function, the Griewank function, the Rastrigin function, and the Rosenbrok function, while the dimension of these problems increases from five to thirty. Furthermore, a discussion and a conclusion about the results obtained by each algorithm face to the resolution of these complex multi-dimensional problems will be drawn.","PeriodicalId":345017,"journal":{"name":"2022 8th International Conference on Optimization and Applications (ICOA)","volume":"406 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study of several metaheuristic algorithms for optimization problems\",\"authors\":\"Reddad Hakima, Zemzami Maria, E. Norelislam, Hmina Nabil\",\"doi\":\"10.1109/ICOA55659.2022.9934204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a study of a recent metaheuristic optimization method, the search and rescue algorithm (SAR), against four known metaheuristic optimization algorithms, the Salp Swarm Algorithm (SSA), the Cuckoo Search Algorithm (CSA), the Firefly Algorithm (FA), and the Grey Wolf Optimization Algorithm (GWO). An evaluation of its performance against the other algorithms will be performed by the means of thirteen mathematical benchmarks functions, afterwards a study of the optimization of five multi-dimensional mathematical problems will be investigated, the optimization of the Dejoung function, the Cosine Mixture function, the Griewank function, the Rastrigin function, and the Rosenbrok function, while the dimension of these problems increases from five to thirty. Furthermore, a discussion and a conclusion about the results obtained by each algorithm face to the resolution of these complex multi-dimensional problems will be drawn.\",\"PeriodicalId\":345017,\"journal\":{\"name\":\"2022 8th International Conference on Optimization and Applications (ICOA)\",\"volume\":\"406 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th International Conference on Optimization and Applications (ICOA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOA55659.2022.9934204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA55659.2022.9934204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对Salp Swarm algorithm (SSA)、Cuckoo search algorithm (CSA)、Firefly algorithm (FA)和灰狼optimization algorithm (GWO)这四种已知的元启发式优化算法,研究了一种新的元启发式优化方法——搜救算法(SAR)。将通过13个数学基准函数对其与其他算法的性能进行评估,然后研究5个多维数学问题的优化,即Dejoung函数、余弦混合函数、Griewank函数、Rastrigin函数和Rosenbrok函数的优化,而这些问题的维度从5增加到30。此外,针对这些复杂的多维问题的求解,对各种算法得到的结果进行了讨论和总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparative study of several metaheuristic algorithms for optimization problems
This article presents a study of a recent metaheuristic optimization method, the search and rescue algorithm (SAR), against four known metaheuristic optimization algorithms, the Salp Swarm Algorithm (SSA), the Cuckoo Search Algorithm (CSA), the Firefly Algorithm (FA), and the Grey Wolf Optimization Algorithm (GWO). An evaluation of its performance against the other algorithms will be performed by the means of thirteen mathematical benchmarks functions, afterwards a study of the optimization of five multi-dimensional mathematical problems will be investigated, the optimization of the Dejoung function, the Cosine Mixture function, the Griewank function, the Rastrigin function, and the Rosenbrok function, while the dimension of these problems increases from five to thirty. Furthermore, a discussion and a conclusion about the results obtained by each algorithm face to the resolution of these complex multi-dimensional problems will be drawn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The importance of enterprise resource planning (ERP) in the optimisation of the small and medium enterprise's ressources in Morocco Nonsmooth Optimization for Synaptic Depression Dynamics 6G and V2X Communications: Applications, Features, and Challenges An Optimized Adaptive Learning Approach Based on Cuckoo Search Algorithm Waste solid management using Machine learning approch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1