基于多元学习方法的刑事定罪分类

Xi Yang, Xudong Luo, Ying Liu
{"title":"基于多元学习方法的刑事定罪分类","authors":"Xi Yang, Xudong Luo, Ying Liu","doi":"10.1109/ISKE47853.2019.9170293","DOIUrl":null,"url":null,"abstract":"The application of artificial intelligence in the legal field can save a lot of the time for legal professionals. In particular, in this paper we propose a method for predicting what kind of conviction a suspect has according to the facts of the crime of the suspect. Specifically, we first pre-process the data and then use multiple classification methods to classify the crime facts, and finally combine the results of each model to gain a more accurate of conviction classification.","PeriodicalId":399084,"journal":{"name":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Criminal Conviction Classification Based on Multiple Learning Methods\",\"authors\":\"Xi Yang, Xudong Luo, Ying Liu\",\"doi\":\"10.1109/ISKE47853.2019.9170293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of artificial intelligence in the legal field can save a lot of the time for legal professionals. In particular, in this paper we propose a method for predicting what kind of conviction a suspect has according to the facts of the crime of the suspect. Specifically, we first pre-process the data and then use multiple classification methods to classify the crime facts, and finally combine the results of each model to gain a more accurate of conviction classification.\",\"PeriodicalId\":399084,\"journal\":{\"name\":\"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE47853.2019.9170293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE47853.2019.9170293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能在法律领域的应用可以为法律专业人员节省大量的时间。本文特别提出了一种根据犯罪嫌疑人的犯罪事实来预测犯罪嫌疑人有罪程度的方法。具体而言,我们首先对数据进行预处理,然后使用多种分类方法对犯罪事实进行分类,最后将各个模型的结果结合起来,以获得更准确的定罪分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Criminal Conviction Classification Based on Multiple Learning Methods
The application of artificial intelligence in the legal field can save a lot of the time for legal professionals. In particular, in this paper we propose a method for predicting what kind of conviction a suspect has according to the facts of the crime of the suspect. Specifically, we first pre-process the data and then use multiple classification methods to classify the crime facts, and finally combine the results of each model to gain a more accurate of conviction classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental Learning for Transductive SVMs ISKE 2019 Table of Contents Consensus: The Minimum Cost Model based Robust Optimization A Learned Clause Deletion Strategy Based on Distance Ratio Effects of Real Estate Regulation Policy of Beijing Based on Discrete Dependent Variables Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1