无循环Top-K规划

Julian von Tschammer, Robert Mattmüller, David Speck
{"title":"无循环Top-K规划","authors":"Julian von Tschammer, Robert Mattmüller, David Speck","doi":"10.1609/icaps.v32i1.19823","DOIUrl":null,"url":null,"abstract":"In top-k planning, the objective is to determine a set of k cheapest plans that provide several good alternatives to choose from. Such a solution set often contains plans that visit at least one state more than once. Depending on the application, plans with such loops are of little importance because they are dominated by a loopless representative and can prevent more meaningful plans from being found.\n\nIn this paper, we motivate and introduce loopless top-k planning. We show how to enhance the state-of-the-art symbolic top-k planner, symK, to obtain an efficient, sound and complete algorithm for loopless top-k planning. An empirical evaluation shows that our proposed approach has a higher k-coverage than a generate-and-test approach that uses an ordinary top-k planner, which we show to be incomplete in the presence of zero-cost loops.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Loopless Top-K Planning\",\"authors\":\"Julian von Tschammer, Robert Mattmüller, David Speck\",\"doi\":\"10.1609/icaps.v32i1.19823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In top-k planning, the objective is to determine a set of k cheapest plans that provide several good alternatives to choose from. Such a solution set often contains plans that visit at least one state more than once. Depending on the application, plans with such loops are of little importance because they are dominated by a loopless representative and can prevent more meaningful plans from being found.\\n\\nIn this paper, we motivate and introduce loopless top-k planning. We show how to enhance the state-of-the-art symbolic top-k planner, symK, to obtain an efficient, sound and complete algorithm for loopless top-k planning. An empirical evaluation shows that our proposed approach has a higher k-coverage than a generate-and-test approach that uses an ordinary top-k planner, which we show to be incomplete in the presence of zero-cost loops.\",\"PeriodicalId\":239898,\"journal\":{\"name\":\"International Conference on Automated Planning and Scheduling\",\"volume\":\"170 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Automated Planning and Scheduling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icaps.v32i1.19823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v32i1.19823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在top-k计划中,目标是确定一组k个最便宜的计划,这些计划提供了几个不错的选择。这样的解决方案集通常包含多次访问至少一个州的计划。根据应用程序的不同,具有这种循环的计划并不重要,因为它们由无循环的代表所控制,并且可能会阻止发现更有意义的计划。在本文中,我们激励并引入了无环的top-k规划。我们展示了如何增强最先进的符号top-k规划器,symK,以获得一个高效,健全和完整的无环路top-k规划算法。经验评估表明,我们提出的方法比使用普通top-k规划器的生成和测试方法具有更高的k-覆盖率,我们表明,在零成本循环存在时,生成和测试方法是不完整的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Loopless Top-K Planning
In top-k planning, the objective is to determine a set of k cheapest plans that provide several good alternatives to choose from. Such a solution set often contains plans that visit at least one state more than once. Depending on the application, plans with such loops are of little importance because they are dominated by a loopless representative and can prevent more meaningful plans from being found. In this paper, we motivate and introduce loopless top-k planning. We show how to enhance the state-of-the-art symbolic top-k planner, symK, to obtain an efficient, sound and complete algorithm for loopless top-k planning. An empirical evaluation shows that our proposed approach has a higher k-coverage than a generate-and-test approach that uses an ordinary top-k planner, which we show to be incomplete in the presence of zero-cost loops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Robust Resource-Constrained Scheduling with Graph Neural Networks Solving the Multi-Choice Two Dimensional Shelf Strip Packing Problem with Time Windows Generalizing Action Justification and Causal Links to Policies Exact Anytime Multi-Agent Path Finding Using Branch-and-Cut-and-Price and Large Neighborhood Search A Constraint Programming Solution to the Guillotine Rectangular Cutting Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1