机器学习算法在心脏病预测中的比较研究

Sanskar Aggarwal
{"title":"机器学习算法在心脏病预测中的比较研究","authors":"Sanskar Aggarwal","doi":"10.30780/specialissue-icaccg2020/039","DOIUrl":null,"url":null,"abstract":"Heart disease is one of the most critical human diseases in the world and affects human life to a very large extent. An accurate and timely diagnosis of heart disease is important to treat and prevent a heart failure. Using machine learning techniques and the data procured by the health care industry, a disease can be detected, predicted and even cured. In this paper, the Naive Bayes, Linear Classifier, K-nearest Neighbour and Random Forest machine learning algorithms have been applied. The results of these four algorithms were compared on the basis of accuracy, specificity and sensitivity for prediction of disease.","PeriodicalId":302312,"journal":{"name":"International Journal of Technical Research & Science","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPARATIVE STUDY ON MACHINE LEARNING ALGORITHMS FOR HEART DISEASE PREDICTION\",\"authors\":\"Sanskar Aggarwal\",\"doi\":\"10.30780/specialissue-icaccg2020/039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart disease is one of the most critical human diseases in the world and affects human life to a very large extent. An accurate and timely diagnosis of heart disease is important to treat and prevent a heart failure. Using machine learning techniques and the data procured by the health care industry, a disease can be detected, predicted and even cured. In this paper, the Naive Bayes, Linear Classifier, K-nearest Neighbour and Random Forest machine learning algorithms have been applied. The results of these four algorithms were compared on the basis of accuracy, specificity and sensitivity for prediction of disease.\",\"PeriodicalId\":302312,\"journal\":{\"name\":\"International Journal of Technical Research & Science\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Technical Research & Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30780/specialissue-icaccg2020/039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Technical Research & Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30780/specialissue-icaccg2020/039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心脏病是世界上最严重的人类疾病之一,在很大程度上影响着人类的生活。准确及时地诊断心脏病对于治疗和预防心力衰竭非常重要。利用机器学习技术和医疗保健行业获取的数据,可以检测、预测甚至治愈疾病。本文应用了朴素贝叶斯、线性分类器、k近邻和随机森林机器学习算法。根据预测疾病的准确性、特异性和敏感性对这四种算法的结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COMPARATIVE STUDY ON MACHINE LEARNING ALGORITHMS FOR HEART DISEASE PREDICTION
Heart disease is one of the most critical human diseases in the world and affects human life to a very large extent. An accurate and timely diagnosis of heart disease is important to treat and prevent a heart failure. Using machine learning techniques and the data procured by the health care industry, a disease can be detected, predicted and even cured. In this paper, the Naive Bayes, Linear Classifier, K-nearest Neighbour and Random Forest machine learning algorithms have been applied. The results of these four algorithms were compared on the basis of accuracy, specificity and sensitivity for prediction of disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PERFORMANCE ANALYSIS OF A NOVEL PORTABLE SOLAR HYBRID VC REFRIGERATION SYSTEM SOLAR ASSISTED REFRIGERATING E-RICKSHAW SYSTEM USED FOR STREET VENDORS EXAM CELL AUTOMATION SYSTEM AND RESULT ANALYSIS GREY WOLF OPTIMIZATION TUNED TID AND I-TD CONTROLLERS FOR TRAJECTORY TRACKING OF DYNAMICAL AERIAL SYSTEM GLOBAL TRENDS AND PROSPECTS IN POLYURETHANE BASED COMPOSITE WITH CARBON FIBER: A BIBLIOMETRIC ANALYSIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1