基于压缩卷积变分自编码器的边缘设备工业物联网无监督异常检测

Dohyung Kim, Hyochang Yang, Minki Chung, Sungzoon Cho
{"title":"基于压缩卷积变分自编码器的边缘设备工业物联网无监督异常检测","authors":"Dohyung Kim, Hyochang Yang, Minki Chung, Sungzoon Cho","doi":"10.1109/INFOCT.2018.8356842","DOIUrl":null,"url":null,"abstract":"In this paper, we propose Squeezed Convolutional Variational AutoEncoder (SCVAE) for anomaly detection in time series data for Edge Computing in Industrial Internet of Things (IIoT). The proposed model is applied to labeled time series data from UCI datasets for exact performance evaluation, and applied to real world data for indirect model performance comparison. In addition, by comparing the models before and after applying Fire Modules from SqueezeNet, we show that model size and inference times are reduced while similar levels of performance is maintained.","PeriodicalId":376443,"journal":{"name":"2018 International Conference on Information and Computer Technologies (ICICT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Squeezed Convolutional Variational AutoEncoder for unsupervised anomaly detection in edge device industrial Internet of Things\",\"authors\":\"Dohyung Kim, Hyochang Yang, Minki Chung, Sungzoon Cho\",\"doi\":\"10.1109/INFOCT.2018.8356842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose Squeezed Convolutional Variational AutoEncoder (SCVAE) for anomaly detection in time series data for Edge Computing in Industrial Internet of Things (IIoT). The proposed model is applied to labeled time series data from UCI datasets for exact performance evaluation, and applied to real world data for indirect model performance comparison. In addition, by comparing the models before and after applying Fire Modules from SqueezeNet, we show that model size and inference times are reduced while similar levels of performance is maintained.\",\"PeriodicalId\":376443,\"journal\":{\"name\":\"2018 International Conference on Information and Computer Technologies (ICICT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Information and Computer Technologies (ICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCT.2018.8356842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Computer Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCT.2018.8356842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

在本文中,我们提出了压缩卷积变分自编码器(SCVAE)用于工业物联网(IIoT)边缘计算中时间序列数据的异常检测。该模型应用于UCI数据集的标记时间序列数据进行精确的性能评估,并应用于真实世界的数据进行间接的模型性能比较。此外,通过比较应用来自SqueezeNet的Fire模块前后的模型,我们发现模型大小和推理时间减少了,同时保持了类似的性能水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Squeezed Convolutional Variational AutoEncoder for unsupervised anomaly detection in edge device industrial Internet of Things
In this paper, we propose Squeezed Convolutional Variational AutoEncoder (SCVAE) for anomaly detection in time series data for Edge Computing in Industrial Internet of Things (IIoT). The proposed model is applied to labeled time series data from UCI datasets for exact performance evaluation, and applied to real world data for indirect model performance comparison. In addition, by comparing the models before and after applying Fire Modules from SqueezeNet, we show that model size and inference times are reduced while similar levels of performance is maintained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling banking processes A taxonomy of IoT: Security and privacy threats DDoS attack detection mechanism in the application layer using user features Reinforcement learning for game personalization on edge devices Stylized line rendering for three-dimensional models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1