标准家庭负荷的近似有功功率分布

Robert Brandalik, Dominik Waeresch, W. Wellssow
{"title":"标准家庭负荷的近似有功功率分布","authors":"Robert Brandalik, Dominik Waeresch, W. Wellssow","doi":"10.1109/PMAPS.2016.7764082","DOIUrl":null,"url":null,"abstract":"The large feed-ins of photovoltaic (PV) systems in low voltage (LV) grids result in increasing voltage magnitudes and line loadings. While the rise of voltage magnitudes can be limited e.g. by distribution transformers (DTs) with on-load tap changers, high line loadings cannot even be detected by network operators due to a lack of network observability. LV state estimation (SE) systems can provide a way to determine the required network states and line loadings. Measured operational network variables, e.g. voltage magnitudes and power values of PV systems, can be used as input data for the SE. Nevertheless, power measurements of households are not available and thus the household loads have to be approximately determined. This paper presents approximate active power distributions (AAPDs) for standard household loads, derived on the basis of field-trial data. They are an innovative way for the necessary generation of active power pseudo-values (APPVs) for LV SE with statistical errors following a Gaussian distribution. Despite the simplicity of the AAPDs the errors made within the current calculation is acceptable.","PeriodicalId":265474,"journal":{"name":"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approximate active power distributions for standard household loads\",\"authors\":\"Robert Brandalik, Dominik Waeresch, W. Wellssow\",\"doi\":\"10.1109/PMAPS.2016.7764082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large feed-ins of photovoltaic (PV) systems in low voltage (LV) grids result in increasing voltage magnitudes and line loadings. While the rise of voltage magnitudes can be limited e.g. by distribution transformers (DTs) with on-load tap changers, high line loadings cannot even be detected by network operators due to a lack of network observability. LV state estimation (SE) systems can provide a way to determine the required network states and line loadings. Measured operational network variables, e.g. voltage magnitudes and power values of PV systems, can be used as input data for the SE. Nevertheless, power measurements of households are not available and thus the household loads have to be approximately determined. This paper presents approximate active power distributions (AAPDs) for standard household loads, derived on the basis of field-trial data. They are an innovative way for the necessary generation of active power pseudo-values (APPVs) for LV SE with statistical errors following a Gaussian distribution. Despite the simplicity of the AAPDs the errors made within the current calculation is acceptable.\",\"PeriodicalId\":265474,\"journal\":{\"name\":\"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PMAPS.2016.7764082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMAPS.2016.7764082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在低压电网中,光伏发电系统的大量馈电会导致电压值和线路负荷的增加。虽然电压值的上升可以被限制,例如通过带有有载分接开关的配电变压器(dt),但由于缺乏网络可观察性,网络运营商甚至无法检测到高线路负载。低压状态估计(SE)系统可以提供一种确定所需网络状态和线路负载的方法。测量的运行网络变量,例如光伏系统的电压值和功率值,可以用作SE的输入数据。然而,由于无法获得家庭的电力测量数据,因此必须大致确定家庭负荷。本文根据现场试验数据,给出了标准家庭负荷的近似有功功率分布。对于统计误差服从高斯分布的低压电网,它们是产生必要有功功率伪值(appv)的一种创新方法。尽管aapd很简单,但在当前计算中产生的错误是可以接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximate active power distributions for standard household loads
The large feed-ins of photovoltaic (PV) systems in low voltage (LV) grids result in increasing voltage magnitudes and line loadings. While the rise of voltage magnitudes can be limited e.g. by distribution transformers (DTs) with on-load tap changers, high line loadings cannot even be detected by network operators due to a lack of network observability. LV state estimation (SE) systems can provide a way to determine the required network states and line loadings. Measured operational network variables, e.g. voltage magnitudes and power values of PV systems, can be used as input data for the SE. Nevertheless, power measurements of households are not available and thus the household loads have to be approximately determined. This paper presents approximate active power distributions (AAPDs) for standard household loads, derived on the basis of field-trial data. They are an innovative way for the necessary generation of active power pseudo-values (APPVs) for LV SE with statistical errors following a Gaussian distribution. Despite the simplicity of the AAPDs the errors made within the current calculation is acceptable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A performance and maintenance evaluation framework for wind turbines Transmission network expansion planning with stochastic multivariate load and wind modeling The anomalous data identification study of reactive power optimization system based on big data A resilient power system operation strategy considering presumed attacks The use of Markov chain method to determine spare transformer number with 3-criteria parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1