饥饿网络:从单个盘子图像重建盘子和盘子的三维网格,用于估计食物体积

Shu Naritomi, Keiji Yanai
{"title":"饥饿网络:从单个盘子图像重建盘子和盘子的三维网格,用于估计食物体积","authors":"Shu Naritomi, Keiji Yanai","doi":"10.1145/3444685.3446275","DOIUrl":null,"url":null,"abstract":"Dietary calorie management has been an important topic in recent years, and various methods and applications on image-based food calorie estimation have been published in the multimedia community. Most of the existing methods of estimating food calorie amounts use 2D-based image recognition. On the other hand, in this paper, we would like to make inferences based on 3D volume for more accurate estimation. We performed 3D reconstruction of a dish (food and plate) and a plate (without foods), from a single image. We succeeded in restoring the 3D shape with high accuracy while maintaining the consistency between a plate part of an estimated 3D dish and an estimated 3D plate. To achieve this, the following contributions were made in this paper. (1) Proposal of \"Hungry Networks,\" a new network that generates two kinds of 3D volumes from a single image. (2) Introduction of plate consistency loss that matches the shapes of the plate parts of the two reconstructed models. (3) Creating a new dataset of 3D food models that are 3D scanned of actual foods and plates. We also conducted an experiment to infer the volume of only the food region from the difference of the two reconstructed volumes. As a result, it was shown that the introduced new loss function not only matches the 3D shape of the plate, but also contributes to obtaining the volume with higher accuracy. Although there are some existing studies that consider 3D shapes of foods, this is the first study to generate a 3D mesh volume from a single dish image.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hungry networks: 3D mesh reconstruction of a dish and a plate from a single dish image for estimating food volume\",\"authors\":\"Shu Naritomi, Keiji Yanai\",\"doi\":\"10.1145/3444685.3446275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dietary calorie management has been an important topic in recent years, and various methods and applications on image-based food calorie estimation have been published in the multimedia community. Most of the existing methods of estimating food calorie amounts use 2D-based image recognition. On the other hand, in this paper, we would like to make inferences based on 3D volume for more accurate estimation. We performed 3D reconstruction of a dish (food and plate) and a plate (without foods), from a single image. We succeeded in restoring the 3D shape with high accuracy while maintaining the consistency between a plate part of an estimated 3D dish and an estimated 3D plate. To achieve this, the following contributions were made in this paper. (1) Proposal of \\\"Hungry Networks,\\\" a new network that generates two kinds of 3D volumes from a single image. (2) Introduction of plate consistency loss that matches the shapes of the plate parts of the two reconstructed models. (3) Creating a new dataset of 3D food models that are 3D scanned of actual foods and plates. We also conducted an experiment to infer the volume of only the food region from the difference of the two reconstructed volumes. As a result, it was shown that the introduced new loss function not only matches the 3D shape of the plate, but also contributes to obtaining the volume with higher accuracy. Although there are some existing studies that consider 3D shapes of foods, this is the first study to generate a 3D mesh volume from a single dish image.\",\"PeriodicalId\":119278,\"journal\":{\"name\":\"Proceedings of the 2nd ACM International Conference on Multimedia in Asia\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd ACM International Conference on Multimedia in Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3444685.3446275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

膳食热量管理是近年来研究的一个重要课题,多媒体界已经发表了各种基于图像的食物热量估算方法和应用。大多数现有的估算食物卡路里量的方法使用基于2d的图像识别。另一方面,在本文中,我们希望基于三维体积进行推断,以获得更准确的估计。我们对一个盘子(食物和盘子)和一个盘子(没有食物)进行了3D重建。我们成功地以高精度恢复了三维形状,同时保持了估计的3D盘子的盘子部分和估计的3D盘子之间的一致性。为了实现这一目标,本文做出了以下贡献。(1)“饥饿网络”(Hungry Networks)的提议,这是一种新的网络,可以从一张图像中生成两种3D体量。(2)引入与两种重构模型的板部形状相匹配的板一致性损失。(3)创建新的3D食品模型数据集,对实际食品和盘子进行3D扫描。我们还进行了一个实验,通过两个重建体积的差异来推断仅食物区域的体积。结果表明,所引入的损失函数不仅与板的三维形状相匹配,而且有助于获得更高精度的体积。虽然已有一些研究考虑了食物的三维形状,但这是第一次从单个盘子图像生成三维网格体积的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hungry networks: 3D mesh reconstruction of a dish and a plate from a single dish image for estimating food volume
Dietary calorie management has been an important topic in recent years, and various methods and applications on image-based food calorie estimation have been published in the multimedia community. Most of the existing methods of estimating food calorie amounts use 2D-based image recognition. On the other hand, in this paper, we would like to make inferences based on 3D volume for more accurate estimation. We performed 3D reconstruction of a dish (food and plate) and a plate (without foods), from a single image. We succeeded in restoring the 3D shape with high accuracy while maintaining the consistency between a plate part of an estimated 3D dish and an estimated 3D plate. To achieve this, the following contributions were made in this paper. (1) Proposal of "Hungry Networks," a new network that generates two kinds of 3D volumes from a single image. (2) Introduction of plate consistency loss that matches the shapes of the plate parts of the two reconstructed models. (3) Creating a new dataset of 3D food models that are 3D scanned of actual foods and plates. We also conducted an experiment to infer the volume of only the food region from the difference of the two reconstructed volumes. As a result, it was shown that the introduced new loss function not only matches the 3D shape of the plate, but also contributes to obtaining the volume with higher accuracy. Although there are some existing studies that consider 3D shapes of foods, this is the first study to generate a 3D mesh volume from a single dish image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Storyboard relational model for group activity recognition Objective object segmentation visual quality evaluation based on pixel-level and region-level characteristics Multiplicative angular margin loss for text-based person search Distilling knowledge in causal inference for unbiased visual question answering A large-scale image retrieval system for everyday scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1