用词义消歧法清理语料库中的一致性错误

Liang-Chih Yu, Chung-Hsien Wu, Jui-Feng Yeh, E. Hovy
{"title":"用词义消歧法清理语料库中的一致性错误","authors":"Liang-Chih Yu, Chung-Hsien Wu, Jui-Feng Yeh, E. Hovy","doi":"10.30019/IJCLCLP.200812.0002","DOIUrl":null,"url":null,"abstract":"Word sense annotated corpora are useful resources for many text mining applications. Such corpora are only useful if their annotations are consistent. Most large-scale annotation efforts take special measures to reconcile inter-annotator disagreement. To date, however, nobody has investigated how to automatically determine exemplars in which the annotators agree but are wrong. In this paper, we use OntoNotes, a large-scale corpus of semantic annotations, including word senses, predicate-argument structure, ontology linking, and coreference. To determine the mistaken agreements in word sense annotation, we employ word sense disambiguation (WSD) to select a set of suspicious candidates for human evaluation. Experiments are conducted from three aspects (precision, cost-effectiveness ratio, and entropy) to examine the performance of WSD. The experimental results show that WSD is most effective in identifying erroneous annotations for highly-ambiguous words, while a baseline is better for other cases. The two methods can be combined to improve the cleanup process. This procedure allows us to find approximately 2% of the remaining erroneous agreements in the OntoNotes corpus. A similar procedure can be easily defined to check other annotated corpora.","PeriodicalId":436300,"journal":{"name":"Int. J. Comput. Linguistics Chin. Lang. Process.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corpus Cleanup of Mistaken Agreement Using Word Sense Disambiguation\",\"authors\":\"Liang-Chih Yu, Chung-Hsien Wu, Jui-Feng Yeh, E. Hovy\",\"doi\":\"10.30019/IJCLCLP.200812.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Word sense annotated corpora are useful resources for many text mining applications. Such corpora are only useful if their annotations are consistent. Most large-scale annotation efforts take special measures to reconcile inter-annotator disagreement. To date, however, nobody has investigated how to automatically determine exemplars in which the annotators agree but are wrong. In this paper, we use OntoNotes, a large-scale corpus of semantic annotations, including word senses, predicate-argument structure, ontology linking, and coreference. To determine the mistaken agreements in word sense annotation, we employ word sense disambiguation (WSD) to select a set of suspicious candidates for human evaluation. Experiments are conducted from three aspects (precision, cost-effectiveness ratio, and entropy) to examine the performance of WSD. The experimental results show that WSD is most effective in identifying erroneous annotations for highly-ambiguous words, while a baseline is better for other cases. The two methods can be combined to improve the cleanup process. This procedure allows us to find approximately 2% of the remaining erroneous agreements in the OntoNotes corpus. A similar procedure can be easily defined to check other annotated corpora.\",\"PeriodicalId\":436300,\"journal\":{\"name\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30019/IJCLCLP.200812.0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Linguistics Chin. Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30019/IJCLCLP.200812.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

词义注释语料库是许多文本挖掘应用程序的有用资源。这样的语料库只有在注释一致的情况下才有用。大多数大规模注释工作都采取特殊措施来调和注释者之间的分歧。然而,到目前为止,还没有人研究过如何自动确定注释者同意但错误的范例。在本文中,我们使用了OntoNotes,一个大规模的语义注释语料库,包括词义,谓词-参数结构,本体链接和共引用。为了确定词义注释中的错误一致,我们使用词义消歧(WSD)来选择一组可疑的候选词进行人工评估。实验从精度、成本效益比和熵三个方面检验了WSD的性能。实验结果表明,WSD在识别高度模糊词的错误注释时最有效,而基线在识别其他情况下效果更好。这两种方法可以结合起来改善清理过程。这个程序允许我们在OntoNotes语料库中找到大约2%的剩余错误协议。可以很容易地定义一个类似的过程来检查其他带注释的语料库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Corpus Cleanup of Mistaken Agreement Using Word Sense Disambiguation
Word sense annotated corpora are useful resources for many text mining applications. Such corpora are only useful if their annotations are consistent. Most large-scale annotation efforts take special measures to reconcile inter-annotator disagreement. To date, however, nobody has investigated how to automatically determine exemplars in which the annotators agree but are wrong. In this paper, we use OntoNotes, a large-scale corpus of semantic annotations, including word senses, predicate-argument structure, ontology linking, and coreference. To determine the mistaken agreements in word sense annotation, we employ word sense disambiguation (WSD) to select a set of suspicious candidates for human evaluation. Experiments are conducted from three aspects (precision, cost-effectiveness ratio, and entropy) to examine the performance of WSD. The experimental results show that WSD is most effective in identifying erroneous annotations for highly-ambiguous words, while a baseline is better for other cases. The two methods can be combined to improve the cleanup process. This procedure allows us to find approximately 2% of the remaining erroneous agreements in the OntoNotes corpus. A similar procedure can be easily defined to check other annotated corpora.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Cold Start Personalized Language Model Using Social Network Information Detecting and Correcting Syntactic Errors in Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars TQDL: Integrated Models for Cross-Language Document Retrieval Evaluation of TTS Systems in Intelligibility and Comprehension Tasks: a Case Study of HTS-2008 and Multisyn Synthesizers Effects of Combining Bilingual and Collocational Information on Translation of English and Chinese Verb-Noun Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1