基于单纯形粒子群优化算法的Box-Jenkins二级级联模型辨识

P. Pal, A. Dasgupta, J. Akhil, R. Kar, D. Mandal, S. P. Ghosal
{"title":"基于单纯形粒子群优化算法的Box-Jenkins二级级联模型辨识","authors":"P. Pal, A. Dasgupta, J. Akhil, R. Kar, D. Mandal, S. P. Ghosal","doi":"10.1109/ISPACS.2016.7824697","DOIUrl":null,"url":null,"abstract":"This paper delivers an efficient and accurate approach for identification of a Box-Jenkins (BJ) structure based Wiener model with Simplex Particle Swarm Optimization (SPSO) algorithm. The accuracy and the precision of the identification scheme have been justified with the reported bias and variance information, respectively, of the estimated parameters. The output mean square error (MSE) has been considered as the fitness function to be optimized for the SPSO algorithm. The accuracy and the consistency of the identification of the Hammerstein system have been justified with the corresponding statistical information of the MSE. Accurate identification of the parameters associated with the linear dynamic sub-system ensures the stability of the overall closed loop system.","PeriodicalId":131543,"journal":{"name":"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of a Box-Jenkins structured two stage cascaded model using Simplex Particle Swarm Optimization algorithm\",\"authors\":\"P. Pal, A. Dasgupta, J. Akhil, R. Kar, D. Mandal, S. P. Ghosal\",\"doi\":\"10.1109/ISPACS.2016.7824697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper delivers an efficient and accurate approach for identification of a Box-Jenkins (BJ) structure based Wiener model with Simplex Particle Swarm Optimization (SPSO) algorithm. The accuracy and the precision of the identification scheme have been justified with the reported bias and variance information, respectively, of the estimated parameters. The output mean square error (MSE) has been considered as the fitness function to be optimized for the SPSO algorithm. The accuracy and the consistency of the identification of the Hammerstein system have been justified with the corresponding statistical information of the MSE. Accurate identification of the parameters associated with the linear dynamic sub-system ensures the stability of the overall closed loop system.\",\"PeriodicalId\":131543,\"journal\":{\"name\":\"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS.2016.7824697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2016.7824697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于单纯形粒子群优化(SPSO)算法的Box-Jenkins (BJ)结构Wiener模型的高效、准确识别方法。用估计参数的偏差和方差信息分别证明了识别方案的准确性和精度。输出均方误差(MSE)被认为是SPSO算法要优化的适应度函数。用MSE的相应统计信息验证了Hammerstein系统识别的准确性和一致性。准确识别与线性动态子系统相关的参数,保证了整个闭环系统的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of a Box-Jenkins structured two stage cascaded model using Simplex Particle Swarm Optimization algorithm
This paper delivers an efficient and accurate approach for identification of a Box-Jenkins (BJ) structure based Wiener model with Simplex Particle Swarm Optimization (SPSO) algorithm. The accuracy and the precision of the identification scheme have been justified with the reported bias and variance information, respectively, of the estimated parameters. The output mean square error (MSE) has been considered as the fitness function to be optimized for the SPSO algorithm. The accuracy and the consistency of the identification of the Hammerstein system have been justified with the corresponding statistical information of the MSE. Accurate identification of the parameters associated with the linear dynamic sub-system ensures the stability of the overall closed loop system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SDN experimental on the PSU network Time frequency analysis: A sparse S transform approach Automatic rule registration and deletion function on a packet lookup engine LSI Study on the latency efficient IFFT design method for low latency communication systems An inverse tone mapping operator based on Reinhard's global operator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1