电子热管理用PCM散热器研究进展

A. Husainy, Abhishek M. Funde, A. Sonalkar, Shoaib I. Mulla, Rushikesh S. Gote
{"title":"电子热管理用PCM散热器研究进展","authors":"A. Husainy, Abhishek M. Funde, A. Sonalkar, Shoaib I. Mulla, Rushikesh S. Gote","doi":"10.51983/arme-2023.12.1.3640","DOIUrl":null,"url":null,"abstract":"A significant challenge in thermal management has arisen as a result of the rising demand for high-performance electronic devices. The efficiency, size, and weight of conventional cooling methods like liquid and air cooling are constrained. Due to their high storage of latent heat capacity and isothermal phase transition behavior, phase change materials (PCMs) have become a promising thermal management solution. The purpose of this experimental study is to evaluate the performance of a PCM heat sink for electronic thermal regulation. The PCM heat sink is made up of a PCM module attached to a typical heat sink. To improve heat dissipation capabilities, the PCM module uses a PCM material with a suitable phase change temperature and encapsulation. The experimental setup involves simulating real-world operating conditions by applying controlled heat loads to electronic components. By observing temperature changes, thermal resistance, and transient response, the PCM heat sink’s thermal performance is assessed. To evaluate the superiority of the PCM heat sink, a comparison is made with traditional air-cooled and liquid-cooled heat sink configurations. The experimental investigation’s findings show that the PCM heat sink performs better in terms of thermal management than traditional cooling techniques. The phase change process used by the PCM efficiently absorbs and stores extra heat produced by electronic parts, improving temperature regulation and lowering temperature gradients. Lower component temperatures and higher operational reliability are the results of the PCM heat sink’s improved thermal resistance and heat dissipation efficiency. A further benefit of the PCM heat sink’s isothermal behavior during the phase transition is that it prevents temperature spikes and lessens the effects of heat stress on the electronic devices. The long cooling times provided by the PCM material’s high latent heat storage capacity allow for prolonged operation without affecting device performance. This experimental study concludes by demonstrating the efficiency of a PCM heat sink for electronic thermal management. The design of heat sinks with PCM integration offers notable enhancements in temperature control, thermal resistance, and system overall reliability. The results of this research help to advance thermal management strategies, which makes it easier to create efficient electronic devices with better cooling capacities.","PeriodicalId":340179,"journal":{"name":"Asian Review of Mechanical Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review on PCM Heat Sink for Electronic Thermal Management Application\",\"authors\":\"A. Husainy, Abhishek M. Funde, A. Sonalkar, Shoaib I. Mulla, Rushikesh S. Gote\",\"doi\":\"10.51983/arme-2023.12.1.3640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A significant challenge in thermal management has arisen as a result of the rising demand for high-performance electronic devices. The efficiency, size, and weight of conventional cooling methods like liquid and air cooling are constrained. Due to their high storage of latent heat capacity and isothermal phase transition behavior, phase change materials (PCMs) have become a promising thermal management solution. The purpose of this experimental study is to evaluate the performance of a PCM heat sink for electronic thermal regulation. The PCM heat sink is made up of a PCM module attached to a typical heat sink. To improve heat dissipation capabilities, the PCM module uses a PCM material with a suitable phase change temperature and encapsulation. The experimental setup involves simulating real-world operating conditions by applying controlled heat loads to electronic components. By observing temperature changes, thermal resistance, and transient response, the PCM heat sink’s thermal performance is assessed. To evaluate the superiority of the PCM heat sink, a comparison is made with traditional air-cooled and liquid-cooled heat sink configurations. The experimental investigation’s findings show that the PCM heat sink performs better in terms of thermal management than traditional cooling techniques. The phase change process used by the PCM efficiently absorbs and stores extra heat produced by electronic parts, improving temperature regulation and lowering temperature gradients. Lower component temperatures and higher operational reliability are the results of the PCM heat sink’s improved thermal resistance and heat dissipation efficiency. A further benefit of the PCM heat sink’s isothermal behavior during the phase transition is that it prevents temperature spikes and lessens the effects of heat stress on the electronic devices. The long cooling times provided by the PCM material’s high latent heat storage capacity allow for prolonged operation without affecting device performance. This experimental study concludes by demonstrating the efficiency of a PCM heat sink for electronic thermal management. The design of heat sinks with PCM integration offers notable enhancements in temperature control, thermal resistance, and system overall reliability. The results of this research help to advance thermal management strategies, which makes it easier to create efficient electronic devices with better cooling capacities.\",\"PeriodicalId\":340179,\"journal\":{\"name\":\"Asian Review of Mechanical Engineering\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Review of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51983/arme-2023.12.1.3640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Review of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51983/arme-2023.12.1.3640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于对高性能电子器件的需求不断增长,热管理方面出现了重大挑战。传统冷却方法如液体和空气冷却的效率、尺寸和重量都受到限制。由于相变材料具有较高的潜热容量和等温相变特性,相变材料已成为一种很有前途的热管理解决方案。本实验研究的目的是评估用于电子热调节的PCM散热器的性能。PCM散热器是由一个PCM模块连接到一个典型的散热器。为了提高散热能力,PCM模块采用合适相变温度和封装的PCM材料。实验设置包括通过对电子元件施加受控热负荷来模拟真实世界的操作条件。通过观察温度变化、热阻和瞬态响应,评估了PCM散热器的热性能。为了评价PCM散热器的优越性,将其与传统的风冷和液冷散热器结构进行了比较。实验研究结果表明,PCM散热器在热管理方面比传统的冷却技术有更好的表现。PCM使用的相变过程有效地吸收和存储电子部件产生的额外热量,改善温度调节并降低温度梯度。PCM散热器提高了热阻和散热效率,降低了元件温度,提高了工作可靠性。PCM散热器在相变过程中的等温行为的另一个好处是它可以防止温度峰值并减少热应力对电子设备的影响。PCM材料的高潜热储存能力提供的长冷却时间允许长时间运行而不影响设备性能。本实验研究证明了PCM散热器在电子热管理方面的效率。与PCM集成散热器的设计提供了显著的增强在温度控制,热阻,和系统的整体可靠性。这项研究的结果有助于推进热管理策略,这使得更容易创造出具有更好冷却能力的高效电子设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review on PCM Heat Sink for Electronic Thermal Management Application
A significant challenge in thermal management has arisen as a result of the rising demand for high-performance electronic devices. The efficiency, size, and weight of conventional cooling methods like liquid and air cooling are constrained. Due to their high storage of latent heat capacity and isothermal phase transition behavior, phase change materials (PCMs) have become a promising thermal management solution. The purpose of this experimental study is to evaluate the performance of a PCM heat sink for electronic thermal regulation. The PCM heat sink is made up of a PCM module attached to a typical heat sink. To improve heat dissipation capabilities, the PCM module uses a PCM material with a suitable phase change temperature and encapsulation. The experimental setup involves simulating real-world operating conditions by applying controlled heat loads to electronic components. By observing temperature changes, thermal resistance, and transient response, the PCM heat sink’s thermal performance is assessed. To evaluate the superiority of the PCM heat sink, a comparison is made with traditional air-cooled and liquid-cooled heat sink configurations. The experimental investigation’s findings show that the PCM heat sink performs better in terms of thermal management than traditional cooling techniques. The phase change process used by the PCM efficiently absorbs and stores extra heat produced by electronic parts, improving temperature regulation and lowering temperature gradients. Lower component temperatures and higher operational reliability are the results of the PCM heat sink’s improved thermal resistance and heat dissipation efficiency. A further benefit of the PCM heat sink’s isothermal behavior during the phase transition is that it prevents temperature spikes and lessens the effects of heat stress on the electronic devices. The long cooling times provided by the PCM material’s high latent heat storage capacity allow for prolonged operation without affecting device performance. This experimental study concludes by demonstrating the efficiency of a PCM heat sink for electronic thermal management. The design of heat sinks with PCM integration offers notable enhancements in temperature control, thermal resistance, and system overall reliability. The results of this research help to advance thermal management strategies, which makes it easier to create efficient electronic devices with better cooling capacities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Tolerance Conceptual Strategy for a Quadcopter Drone with Rotor Failure Rheometric Analysis of Impact of Temperature, Volume Fraction and Mass of Nanoparticle on the Viscosity of Water Based Nanofluids Composite Laminates for Aerospace and Packaging Fields Aerodynamic Simulation and Optimization of Micro Aerial Vehicle Rotor Airfoil at Low Reynolds Number Medical Additive Manufacturing: Challenges and Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1