{"title":"增强快速人脸识别","authors":"G. Guo, HongJiang Zhang","doi":"10.1109/RATFG.2001.938916","DOIUrl":null,"url":null,"abstract":"We propose to use the AdaBoost algorithm for face recognition. AdaBoost is a kind of large margin classifiers and is efficient for online learning. In order to adapt the AdaBoost algorithm to fast face recognition, the original AdaBoost which uses all given features is compared with the boosting feature dimensions. The comparable results assure the use of the latter, which is faster for classification. The AdaBoost is typically a classification between two classes. To solve the multi-class recognition problem, we propose to use a constrained majority voting strategy to largely reduce the number of pairwise comparisons, without losing the recognition accuracy. Experimental results on a large face database of 1079 faces of 137 individuals show the feasibility of our approach for fast face recognition.","PeriodicalId":355094,"journal":{"name":"Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Boosting for fast face recognition\",\"authors\":\"G. Guo, HongJiang Zhang\",\"doi\":\"10.1109/RATFG.2001.938916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose to use the AdaBoost algorithm for face recognition. AdaBoost is a kind of large margin classifiers and is efficient for online learning. In order to adapt the AdaBoost algorithm to fast face recognition, the original AdaBoost which uses all given features is compared with the boosting feature dimensions. The comparable results assure the use of the latter, which is faster for classification. The AdaBoost is typically a classification between two classes. To solve the multi-class recognition problem, we propose to use a constrained majority voting strategy to largely reduce the number of pairwise comparisons, without losing the recognition accuracy. Experimental results on a large face database of 1079 faces of 137 individuals show the feasibility of our approach for fast face recognition.\",\"PeriodicalId\":355094,\"journal\":{\"name\":\"Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RATFG.2001.938916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RATFG.2001.938916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

我们建议使用AdaBoost算法进行人脸识别。AdaBoost是一种大边际分类器,对在线学习非常有效。为了使AdaBoost算法适应快速人脸识别,将使用所有给定特征的原始AdaBoost算法与增强的特征维数进行了比较。可比较的结果保证了后者的使用,后者的分类速度更快。AdaBoost通常分为两类。为了解决多类识别问题,我们提出使用约束多数投票策略,在不损失识别精度的前提下,大大减少两两比较的次数。在137个个体的1079张人脸的大型人脸数据库上进行的实验结果表明,该方法具有快速人脸识别的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boosting for fast face recognition
We propose to use the AdaBoost algorithm for face recognition. AdaBoost is a kind of large margin classifiers and is efficient for online learning. In order to adapt the AdaBoost algorithm to fast face recognition, the original AdaBoost which uses all given features is compared with the boosting feature dimensions. The comparable results assure the use of the latter, which is faster for classification. The AdaBoost is typically a classification between two classes. To solve the multi-class recognition problem, we propose to use a constrained majority voting strategy to largely reduce the number of pairwise comparisons, without losing the recognition accuracy. Experimental results on a large face database of 1079 faces of 137 individuals show the feasibility of our approach for fast face recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boosting for fast face recognition Real-time stereo tracking of multiple moving heads Video-based online face recognition using identity surfaces Nonlinear mapping from multi-view face patterns to a Gaussian distribution in a low dimensional space Head and hands 3D tracking in real time by the EM algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1