在磁盘功率降低的情况下对代码和数据优化的评估

M. Kandemir, S. Son, Guangyu Chen
{"title":"在磁盘功率降低的情况下对代码和数据优化的评估","authors":"M. Kandemir, S. Son, Guangyu Chen","doi":"10.1145/1077603.1077655","DOIUrl":null,"url":null,"abstract":"Disk power management is becoming increasingly important in high-end server and cluster type of environments that execute data-intensive applications. While hardware-only approaches (e.g., low-power modes supported by current disks) are successful to a certain extent, one also needs to consider the software side to achieve further energy savings. This paper first demonstrates that conventional data locality oriented code transformations are not sufficient for minimizing disk power consumption. The reason is that these optimizations do not take into account how disk-resident array data are laid out on the disk system, and consequently, fail to increase idle periods of disks, which is the primary metric using which disk power can be reduced. Instead, we propose a disk layout aware application optimization strategy that uses both code restructuring and data layout optimization. Our experimental evaluation with several benchmark codes reveal that the proposed strategy is very successful in reducing disk energy consumption without performing much worse than a pure data locality oriented scheme, as far as execution cycles are concerned. The experiments also show that the benefits coming from our approach increase with the increased number of disks; i.e., it scales very well.","PeriodicalId":256018,"journal":{"name":"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An evaluation of code and data optimizations in the context of disk power reduction\",\"authors\":\"M. Kandemir, S. Son, Guangyu Chen\",\"doi\":\"10.1145/1077603.1077655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Disk power management is becoming increasingly important in high-end server and cluster type of environments that execute data-intensive applications. While hardware-only approaches (e.g., low-power modes supported by current disks) are successful to a certain extent, one also needs to consider the software side to achieve further energy savings. This paper first demonstrates that conventional data locality oriented code transformations are not sufficient for minimizing disk power consumption. The reason is that these optimizations do not take into account how disk-resident array data are laid out on the disk system, and consequently, fail to increase idle periods of disks, which is the primary metric using which disk power can be reduced. Instead, we propose a disk layout aware application optimization strategy that uses both code restructuring and data layout optimization. Our experimental evaluation with several benchmark codes reveal that the proposed strategy is very successful in reducing disk energy consumption without performing much worse than a pure data locality oriented scheme, as far as execution cycles are concerned. The experiments also show that the benefits coming from our approach increase with the increased number of disks; i.e., it scales very well.\",\"PeriodicalId\":256018,\"journal\":{\"name\":\"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1077603.1077655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1077603.1077655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

磁盘电源管理在执行数据密集型应用程序的高端服务器和集群类型环境中变得越来越重要。虽然纯硬件方法(例如,当前磁盘支持的低功耗模式)在一定程度上是成功的,但还需要考虑软件方面,以实现进一步的节能。本文首先证明了传统的面向数据局部性的代码转换不足以最小化磁盘功耗。原因是这些优化没有考虑驻留磁盘的阵列数据在磁盘系统上的布局方式,因此无法增加磁盘的空闲时间,而空闲时间是降低磁盘功耗的主要指标。相反,我们提出了一种磁盘布局感知的应用程序优化策略,该策略同时使用代码重构和数据布局优化。我们对几个基准代码的实验评估表明,就执行周期而言,所提出的策略在减少磁盘能量消耗方面非常成功,而不会比纯粹的面向数据位置的方案差很多。实验还表明,我们的方法带来的好处随着磁盘数量的增加而增加;也就是说,它的可扩展性非常好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An evaluation of code and data optimizations in the context of disk power reduction
Disk power management is becoming increasingly important in high-end server and cluster type of environments that execute data-intensive applications. While hardware-only approaches (e.g., low-power modes supported by current disks) are successful to a certain extent, one also needs to consider the software side to achieve further energy savings. This paper first demonstrates that conventional data locality oriented code transformations are not sufficient for minimizing disk power consumption. The reason is that these optimizations do not take into account how disk-resident array data are laid out on the disk system, and consequently, fail to increase idle periods of disks, which is the primary metric using which disk power can be reduced. Instead, we propose a disk layout aware application optimization strategy that uses both code restructuring and data layout optimization. Our experimental evaluation with several benchmark codes reveal that the proposed strategy is very successful in reducing disk energy consumption without performing much worse than a pure data locality oriented scheme, as far as execution cycles are concerned. The experiments also show that the benefits coming from our approach increase with the increased number of disks; i.e., it scales very well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimizing sensor movement planning for energy efficiency Power-optimal repeater insertion considering V/sub dd/ and V/sub th/ as design freedoms An efficient (SPST) and its applications on MPEG-4 AVC/H.264 transform coding design A 9.5mW 4GHz WCDMA frequency synthesizer in 0.13/spl mu/m CMOS Linear programming for sizing, V/sub th/ and V/sub dd/ assignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1