无线传感器网络太阳能收集系统的综合研究

D. K. Sah, Nabajyoti Mazumdar, Pankaj Pal, Tarachand Amgoth
{"title":"无线传感器网络太阳能收集系统的综合研究","authors":"D. K. Sah, Nabajyoti Mazumdar, Pankaj Pal, Tarachand Amgoth","doi":"10.1109/UPCON56432.2022.9986433","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Networks (WSNs) incorporate sensor nodes with minimal power consumption. Sensor devices are in high demand in many areas, including smart cities, environmental monitoring, the Internet of Things (IoT), health monitoring, and the like. As nodes are frequently located in remote places, and an ordinary node battery life is too short, energy depletion is a significant problem for the sensor network. But it's not practical to change or regularly maintain the sensor node's battery. This could cause the network to disconnect. Consequently, a recharging sensor node battery has been identified using energy harvesting (EH). It has several environmental forms, including solar, wind, mechanical, etc. The solar system provides unlimited energy resources to nodes. This paper examines a comprehensive case study of solar harvesting systems and their most recent applications. In solar harvesting nodes, the following primary components are utilised: solar panels, energy storage classes, a $DC-DC$ converter, maximum power point tracking (MPPT), an energy predictor, and a sensing module. Furthermore, we have discussed some recent applications and future work of sensor networks, for example, green street lights, agriculture 4.0, outdoor environment-based monitoring, IIoT, hybrid storage class and new communication technologies.","PeriodicalId":185782,"journal":{"name":"2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON)","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Comprehensive Study of Solar Energy Harvesting System in Wireless Sensor Networks\",\"authors\":\"D. K. Sah, Nabajyoti Mazumdar, Pankaj Pal, Tarachand Amgoth\",\"doi\":\"10.1109/UPCON56432.2022.9986433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Sensor Networks (WSNs) incorporate sensor nodes with minimal power consumption. Sensor devices are in high demand in many areas, including smart cities, environmental monitoring, the Internet of Things (IoT), health monitoring, and the like. As nodes are frequently located in remote places, and an ordinary node battery life is too short, energy depletion is a significant problem for the sensor network. But it's not practical to change or regularly maintain the sensor node's battery. This could cause the network to disconnect. Consequently, a recharging sensor node battery has been identified using energy harvesting (EH). It has several environmental forms, including solar, wind, mechanical, etc. The solar system provides unlimited energy resources to nodes. This paper examines a comprehensive case study of solar harvesting systems and their most recent applications. In solar harvesting nodes, the following primary components are utilised: solar panels, energy storage classes, a $DC-DC$ converter, maximum power point tracking (MPPT), an energy predictor, and a sensing module. Furthermore, we have discussed some recent applications and future work of sensor networks, for example, green street lights, agriculture 4.0, outdoor environment-based monitoring, IIoT, hybrid storage class and new communication technologies.\",\"PeriodicalId\":185782,\"journal\":{\"name\":\"2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON)\",\"volume\":\"172 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPCON56432.2022.9986433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPCON56432.2022.9986433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无线传感器网络(WSNs)以最小的功耗集成传感器节点。传感器设备在许多领域都有很高的需求,包括智能城市、环境监测、物联网(IoT)、健康监测等。由于节点经常位于偏远的地方,普通节点的电池寿命太短,能量消耗是传感器网络的一个重要问题。但是,更换或定期维护传感器节点的电池是不现实的。这可能导致网络断开连接。因此,利用能量收集(EH)技术确定了一种可充电的传感器节点电池。它有几种环保形式,包括太阳能、风能、机械能等。太阳系为节点提供了无限的能量资源。本文考察了太阳能收集系统及其最新应用的综合案例研究。在太阳能收集节点中,使用以下主要组件:太阳能电池板,能量存储类,DC-DC转换器,最大功率点跟踪(MPPT),能量预测器和传感模块。此外,我们还讨论了传感器网络的一些最新应用和未来工作,例如绿色路灯,农业4.0,户外环境监测,工业物联网,混合存储类和新通信技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comprehensive Study of Solar Energy Harvesting System in Wireless Sensor Networks
Wireless Sensor Networks (WSNs) incorporate sensor nodes with minimal power consumption. Sensor devices are in high demand in many areas, including smart cities, environmental monitoring, the Internet of Things (IoT), health monitoring, and the like. As nodes are frequently located in remote places, and an ordinary node battery life is too short, energy depletion is a significant problem for the sensor network. But it's not practical to change or regularly maintain the sensor node's battery. This could cause the network to disconnect. Consequently, a recharging sensor node battery has been identified using energy harvesting (EH). It has several environmental forms, including solar, wind, mechanical, etc. The solar system provides unlimited energy resources to nodes. This paper examines a comprehensive case study of solar harvesting systems and their most recent applications. In solar harvesting nodes, the following primary components are utilised: solar panels, energy storage classes, a $DC-DC$ converter, maximum power point tracking (MPPT), an energy predictor, and a sensing module. Furthermore, we have discussed some recent applications and future work of sensor networks, for example, green street lights, agriculture 4.0, outdoor environment-based monitoring, IIoT, hybrid storage class and new communication technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mains Interface Circuit Design for Traveling Wave Tube Amplifier A Passive Technique for Detecting Islanding Using Voltage Sequence Component A Unified Framework for Covariance Adaptation with Multiple Source Domains Advance Sensor for Monitoring Electrolyte Leakage in Lithium-ion Batteries for Electric Vehicles A comparative study of survey papers based on energy efficient, coverage-aware, and fault tolerant in static sink node of WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1