{"title":"子带语音的数字编码","authors":"R. Crochiere, S. A. Webber, J. Flanagan","doi":"10.1109/ICASSP.1976.1170079","DOIUrl":null,"url":null,"abstract":"A rationale is advanced for digitally coding speech signals in terms of sub-bands of the total spectrum. The approach provides a means for controlling and reducing quantizing noise in the coding. Each sub-band is quantized with an accuracy (bit allocation) based upon perceptual criteria. As a result, the quality of the coded signal is improved over that obtained from a single full-band coding of the total spectrum. In one implementation, the individual sub-bands are low-pass translated before coding. In another, “integer-band” sampling is employed to alias the signal in an advantageous way before coding. Other possibilities extend to complex demodulation of the sub-bands, and to representing the sub-band signals in terms of envelopes and phase-derivatives. In all techniques, adaptive quantization is used for the coding, and a parsimonious allocation of bits is made across the bands. Computer simulations are made to demonstrate the signal qualities obtained for codings at 16 and 9.6 kb/s.","PeriodicalId":447574,"journal":{"name":"The Bell System Technical Journal","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1976-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"386","resultStr":"{\"title\":\"Digital coding of speech in sub-bands\",\"authors\":\"R. Crochiere, S. A. Webber, J. Flanagan\",\"doi\":\"10.1109/ICASSP.1976.1170079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A rationale is advanced for digitally coding speech signals in terms of sub-bands of the total spectrum. The approach provides a means for controlling and reducing quantizing noise in the coding. Each sub-band is quantized with an accuracy (bit allocation) based upon perceptual criteria. As a result, the quality of the coded signal is improved over that obtained from a single full-band coding of the total spectrum. In one implementation, the individual sub-bands are low-pass translated before coding. In another, “integer-band” sampling is employed to alias the signal in an advantageous way before coding. Other possibilities extend to complex demodulation of the sub-bands, and to representing the sub-band signals in terms of envelopes and phase-derivatives. In all techniques, adaptive quantization is used for the coding, and a parsimonious allocation of bits is made across the bands. Computer simulations are made to demonstrate the signal qualities obtained for codings at 16 and 9.6 kb/s.\",\"PeriodicalId\":447574,\"journal\":{\"name\":\"The Bell System Technical Journal\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1976-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"386\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Bell System Technical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1976.1170079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Bell System Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1976.1170079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A rationale is advanced for digitally coding speech signals in terms of sub-bands of the total spectrum. The approach provides a means for controlling and reducing quantizing noise in the coding. Each sub-band is quantized with an accuracy (bit allocation) based upon perceptual criteria. As a result, the quality of the coded signal is improved over that obtained from a single full-band coding of the total spectrum. In one implementation, the individual sub-bands are low-pass translated before coding. In another, “integer-band” sampling is employed to alias the signal in an advantageous way before coding. Other possibilities extend to complex demodulation of the sub-bands, and to representing the sub-band signals in terms of envelopes and phase-derivatives. In all techniques, adaptive quantization is used for the coding, and a parsimonious allocation of bits is made across the bands. Computer simulations are made to demonstrate the signal qualities obtained for codings at 16 and 9.6 kb/s.