停止非法评论:一种多任务深度学习方法

Ahmed Elnaggar, Bernhard Waltl, Ingo Glaser, Jörg Landthaler, Elena Scepankova, F. Matthes
{"title":"停止非法评论:一种多任务深度学习方法","authors":"Ahmed Elnaggar, Bernhard Waltl, Ingo Glaser, Jörg Landthaler, Elena Scepankova, F. Matthes","doi":"10.1145/3299819.3299845","DOIUrl":null,"url":null,"abstract":"Deep learning methods are often difficult to apply in the legal domain due to the large amount of labeled data required by deep learning methods. A recent new trend in the deep learning community is the application of multi-task models that enable single deep neural networks to perform more than one task at the same time, for example classification and translation tasks. These powerful novel models are capable of transferring knowledge among different tasks or training sets and therefore could open up the legal domain for many deep learning applications. In this paper, we investigate the transfer learning capabilities of such a multi-task model on a classification task on the publicly available Kaggle toxic comment dataset for classifying illegal comments and we can report promising results.","PeriodicalId":119217,"journal":{"name":"Artificial Intelligence and Cloud Computing Conference","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Stop Illegal Comments: A Multi-Task Deep Learning Approach\",\"authors\":\"Ahmed Elnaggar, Bernhard Waltl, Ingo Glaser, Jörg Landthaler, Elena Scepankova, F. Matthes\",\"doi\":\"10.1145/3299819.3299845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning methods are often difficult to apply in the legal domain due to the large amount of labeled data required by deep learning methods. A recent new trend in the deep learning community is the application of multi-task models that enable single deep neural networks to perform more than one task at the same time, for example classification and translation tasks. These powerful novel models are capable of transferring knowledge among different tasks or training sets and therefore could open up the legal domain for many deep learning applications. In this paper, we investigate the transfer learning capabilities of such a multi-task model on a classification task on the publicly available Kaggle toxic comment dataset for classifying illegal comments and we can report promising results.\",\"PeriodicalId\":119217,\"journal\":{\"name\":\"Artificial Intelligence and Cloud Computing Conference\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Cloud Computing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3299819.3299845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Cloud Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3299819.3299845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

由于深度学习方法需要大量的标记数据,因此深度学习方法往往难以应用于法律领域。深度学习社区最近的一个新趋势是多任务模型的应用,它使单个深度神经网络能够同时执行多个任务,例如分类和翻译任务。这些强大的新模型能够在不同的任务或训练集之间转移知识,因此可以为许多深度学习应用开辟法律领域。在本文中,我们研究了这种多任务模型在公开可用的Kaggle有毒评论数据集上的分类任务上的迁移学习能力,用于对非法评论进行分类,我们可以报告有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stop Illegal Comments: A Multi-Task Deep Learning Approach
Deep learning methods are often difficult to apply in the legal domain due to the large amount of labeled data required by deep learning methods. A recent new trend in the deep learning community is the application of multi-task models that enable single deep neural networks to perform more than one task at the same time, for example classification and translation tasks. These powerful novel models are capable of transferring knowledge among different tasks or training sets and therefore could open up the legal domain for many deep learning applications. In this paper, we investigate the transfer learning capabilities of such a multi-task model on a classification task on the publicly available Kaggle toxic comment dataset for classifying illegal comments and we can report promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Fault Diagnosis and Maintenance Decision System for Production Line Based on Human-machine Multi- Information Fusion Do We Need More Training Samples For Text Classification? Risk Assessment for Big Data in Cloud: Security, Privacy and Trust Natural Language Processing for Productivity Metrics for Software Development Profiling in Enterprise Applications Feature Extraction Driven Modeling Attack Against Double Arbiter PUF and Its Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1