图形处理单元(GPU)在实时视觉里程计应用中的使用

Jaime Armando Delgado Vargas, P. Kurka
{"title":"图形处理单元(GPU)在实时视觉里程计应用中的使用","authors":"Jaime Armando Delgado Vargas, P. Kurka","doi":"10.1109/DSN-W.2015.32","DOIUrl":null,"url":null,"abstract":"This paper presents a practical application of visual odometry (VO). Visual odometry applications are computationally expensive due to the frequent and large number of required data processing. In the present work the application is implemented in a graphics processing unit card (GPU) using compute unified device architecture CUDA and OpenCV libraries, allowing real time processing with a speed of 30 frames per second. The algorithm begins with the capture and processing of stereoscopic images to find invariant interest points (keypoints) using the GPU-OpenCV speed-up robust features (SURF) library implementation. Stereoscopic image points are projected in the Euclidean space to yield 3-D estimates of the robot's translation and rotation movements. The real time VO algorithm is applied in a practical odometry estimation in a robot's outdoors navigation experiment.","PeriodicalId":202329,"journal":{"name":"2015 IEEE International Conference on Dependable Systems and Networks Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Use of a Graphic Processing Unit (GPU) in a Real Time Visual Odometry Application\",\"authors\":\"Jaime Armando Delgado Vargas, P. Kurka\",\"doi\":\"10.1109/DSN-W.2015.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a practical application of visual odometry (VO). Visual odometry applications are computationally expensive due to the frequent and large number of required data processing. In the present work the application is implemented in a graphics processing unit card (GPU) using compute unified device architecture CUDA and OpenCV libraries, allowing real time processing with a speed of 30 frames per second. The algorithm begins with the capture and processing of stereoscopic images to find invariant interest points (keypoints) using the GPU-OpenCV speed-up robust features (SURF) library implementation. Stereoscopic image points are projected in the Euclidean space to yield 3-D estimates of the robot's translation and rotation movements. The real time VO algorithm is applied in a practical odometry estimation in a robot's outdoors navigation experiment.\",\"PeriodicalId\":202329,\"journal\":{\"name\":\"2015 IEEE International Conference on Dependable Systems and Networks Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Dependable Systems and Networks Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN-W.2015.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Dependable Systems and Networks Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN-W.2015.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了视觉里程计的一个实际应用。由于需要频繁和大量的数据处理,视觉里程计应用程序的计算成本很高。在目前的工作中,应用程序是在图形处理单元卡(GPU)上实现的,使用计算统一设备架构CUDA和OpenCV库,允许以每秒30帧的速度进行实时处理。该算法从捕获和处理立体图像开始,利用GPU-OpenCV加速鲁棒特征(SURF)库实现寻找不变兴趣点(关键点)。在欧几里得空间中投影立体图像点,以产生机器人平移和旋转运动的三维估计。将实时VO算法应用于机器人户外导航实验的实际里程估计中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Use of a Graphic Processing Unit (GPU) in a Real Time Visual Odometry Application
This paper presents a practical application of visual odometry (VO). Visual odometry applications are computationally expensive due to the frequent and large number of required data processing. In the present work the application is implemented in a graphics processing unit card (GPU) using compute unified device architecture CUDA and OpenCV libraries, allowing real time processing with a speed of 30 frames per second. The algorithm begins with the capture and processing of stereoscopic images to find invariant interest points (keypoints) using the GPU-OpenCV speed-up robust features (SURF) library implementation. Stereoscopic image points are projected in the Euclidean space to yield 3-D estimates of the robot's translation and rotation movements. The real time VO algorithm is applied in a practical odometry estimation in a robot's outdoors navigation experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Video on Demand Hosted in Private Cloud: Availability Modeling and Sensitivity Analysis Semi-automatic Generation of Extended Finite State Machines from Natural Language Standard Documents Studying the Propagation of Failures in SOAs Using Data Integrity as an Improvement Characteristic to Assess the Safety of ADS-B-based Systems Cost Prediction for V&V and Certification Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1