使用形式概念分析的电子学习系统成绩数据分析方法检验

Yoshiki Asami, T. Motoyoshi, K. Sawai, H. Masuta, Noboru Takagi
{"title":"使用形式概念分析的电子学习系统成绩数据分析方法检验","authors":"Yoshiki Asami, T. Motoyoshi, K. Sawai, H. Masuta, Noboru Takagi","doi":"10.1109/ICMLC56445.2022.9941338","DOIUrl":null,"url":null,"abstract":"This study presents a method for effectively applying formal concept analysis (FCA) to performance data for a practice-based Office E-learning system. Efforts to improve the content structure and design of an E-learning system typically involve the analysis of historical data; the problem is that the analyst generally selects the target of the analysis arbitrarily. We examined whether FCA can be used as a trigger for analysts to select the appropriate content. Specifically, we compare the implication relation between correct/incorrect questions captured by the implications of FCA and the overall trend obtained from statistical analysis methods.","PeriodicalId":117829,"journal":{"name":"2022 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examination of Analysis Methods for E-Learning System Grade Data Using Formal Concept Analysis\",\"authors\":\"Yoshiki Asami, T. Motoyoshi, K. Sawai, H. Masuta, Noboru Takagi\",\"doi\":\"10.1109/ICMLC56445.2022.9941338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a method for effectively applying formal concept analysis (FCA) to performance data for a practice-based Office E-learning system. Efforts to improve the content structure and design of an E-learning system typically involve the analysis of historical data; the problem is that the analyst generally selects the target of the analysis arbitrarily. We examined whether FCA can be used as a trigger for analysts to select the appropriate content. Specifically, we compare the implication relation between correct/incorrect questions captured by the implications of FCA and the overall trend obtained from statistical analysis methods.\",\"PeriodicalId\":117829,\"journal\":{\"name\":\"2022 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC56445.2022.9941338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC56445.2022.9941338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种有效地将形式概念分析(FCA)应用于基于实践的办公电子学习系统的绩效数据的方法。改进电子学习系统的内容结构和设计的努力通常涉及对历史数据的分析;问题在于分析人员通常会随意选择分析的目标。我们研究了FCA是否可以作为分析师选择适当内容的触发器。具体来说,我们比较了FCA的含义所捕获的正确/不正确问题之间的含义关系和从统计分析方法中获得的总体趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Examination of Analysis Methods for E-Learning System Grade Data Using Formal Concept Analysis
This study presents a method for effectively applying formal concept analysis (FCA) to performance data for a practice-based Office E-learning system. Efforts to improve the content structure and design of an E-learning system typically involve the analysis of historical data; the problem is that the analyst generally selects the target of the analysis arbitrarily. We examined whether FCA can be used as a trigger for analysts to select the appropriate content. Specifically, we compare the implication relation between correct/incorrect questions captured by the implications of FCA and the overall trend obtained from statistical analysis methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Semantic Segmentation for Vectorization of Line Drawings Based on Deep Neural Networks Real-Time Vehicle Counting by Deep-Learning Networks Unsupervised Representation Learning Method In Sensor Based Human Activity Recognition Improvement and Evaluation of Object Shape Presentation System Using Linear Actuators Examination of Analysis Methods for E-Learning System Grade Data Using Formal Concept Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1