基于时频分析的谱图滤波和脊图拟合

Bingcheng C. Li
{"title":"基于时频分析的谱图滤波和脊图拟合","authors":"Bingcheng C. Li","doi":"10.1109/RadarConf2351548.2023.10149655","DOIUrl":null,"url":null,"abstract":"Since a frequency modulation signal can be approximated by polynomial chirplet in a local time window, polynomial chirplet transform has been applied to acoustic signal processing, radar Doppler analysis and gravity wave analysis. However, the direct implementation of a polynomial chirplet transform has extremely high computational cost due to its high dimensional polynomial chirplet parameter space. In this paper, we propose a spectrogram time-frequency filtering and ridge graph polynomial fitting approach to estimate polynomial chirplet parameters for the time-frequency analysis. In the proposed method, a low dimensional spectrogram ridge graph fitting is developed to extract high dimensional polynomial chirplet parameters for the computational cost reduction. Furthermore, the spectrogram filtering in the time-frequency space is proposed to improve the reliability of spectrogram ridge extraction, and a ridge interpolation technique is recommended to improve the accuracy of ridge extraction. Test results show that the proposed method has a low computational cost, high reliability and accuracy for extracting polynomial chirplet parameters.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectrogram Filtering and Ridge Graph Fitting Based Time Frequency Analysis\",\"authors\":\"Bingcheng C. Li\",\"doi\":\"10.1109/RadarConf2351548.2023.10149655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since a frequency modulation signal can be approximated by polynomial chirplet in a local time window, polynomial chirplet transform has been applied to acoustic signal processing, radar Doppler analysis and gravity wave analysis. However, the direct implementation of a polynomial chirplet transform has extremely high computational cost due to its high dimensional polynomial chirplet parameter space. In this paper, we propose a spectrogram time-frequency filtering and ridge graph polynomial fitting approach to estimate polynomial chirplet parameters for the time-frequency analysis. In the proposed method, a low dimensional spectrogram ridge graph fitting is developed to extract high dimensional polynomial chirplet parameters for the computational cost reduction. Furthermore, the spectrogram filtering in the time-frequency space is proposed to improve the reliability of spectrogram ridge extraction, and a ridge interpolation technique is recommended to improve the accuracy of ridge extraction. Test results show that the proposed method has a low computational cost, high reliability and accuracy for extracting polynomial chirplet parameters.\",\"PeriodicalId\":168311,\"journal\":{\"name\":\"2023 IEEE Radar Conference (RadarConf23)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radar Conference (RadarConf23)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RadarConf2351548.2023.10149655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于调频信号可以在局部时间窗内用多项式啁啾来近似,因此多项式啁啾变换已被应用于声信号处理、雷达多普勒分析和重力波分析。然而,由于多项式啁啾参数空间的高维性,直接实现多项式啁啾变换具有极高的计算成本。本文提出了一种谱图时频滤波和脊图多项式拟合的方法来估计时频分析中的多项式啁啾参数。该方法采用低维谱图脊图拟合方法提取高维多项式啁啾参数,降低了计算成本。在此基础上,提出了在时频空间对谱图进行滤波以提高谱图脊提取的可靠性,并提出了一种脊插值技术以提高脊提取的精度。实验结果表明,该方法计算量小,提取多项式啁啾参数的可靠性和准确性高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectrogram Filtering and Ridge Graph Fitting Based Time Frequency Analysis
Since a frequency modulation signal can be approximated by polynomial chirplet in a local time window, polynomial chirplet transform has been applied to acoustic signal processing, radar Doppler analysis and gravity wave analysis. However, the direct implementation of a polynomial chirplet transform has extremely high computational cost due to its high dimensional polynomial chirplet parameter space. In this paper, we propose a spectrogram time-frequency filtering and ridge graph polynomial fitting approach to estimate polynomial chirplet parameters for the time-frequency analysis. In the proposed method, a low dimensional spectrogram ridge graph fitting is developed to extract high dimensional polynomial chirplet parameters for the computational cost reduction. Furthermore, the spectrogram filtering in the time-frequency space is proposed to improve the reliability of spectrogram ridge extraction, and a ridge interpolation technique is recommended to improve the accuracy of ridge extraction. Test results show that the proposed method has a low computational cost, high reliability and accuracy for extracting polynomial chirplet parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Priority-based Task Scheduling in Dynamic Environments for Cognitive MFR via Transfer DRL An Application of Artificial Intelligence to Adaptive Radar Detection Using Raw Data mm-Wave wireless radar network for early detection of Parkinson's Disease by gait analysis Correlation Coefficient vs. Transmit Power for an Experimental Noise Radar Analysis of Keller Cones for RF Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1