利用动态主题建模检测研究趋势

Amal Alazba, Leina Abouhagar, Randah Al-Harbi, Hamdi A. Al-Jamimi, Abdullah Sultan, Rabah A. Al-Zaidy
{"title":"利用动态主题建模检测研究趋势","authors":"Amal Alazba, Leina Abouhagar, Randah Al-Harbi, Hamdi A. Al-Jamimi, Abdullah Sultan, Rabah A. Al-Zaidy","doi":"10.1109/CDMA54072.2022.00031","DOIUrl":null,"url":null,"abstract":"Discovering trends in research areas is helpful for researchers in finding the recent advances in a field or area of research. In addition, policy makers in universities can utilize this information in decision making. Different factors have direct influence on the growth and evolution of research topics. These include the funding, community interest and national needs. In this paper, we propose an unsupervised Dynamic Topic Modeling approach to discover and analyze the most trending research topics in a set of research areas using a collection of publications from the corresponding research areas. Furthermore, we study the correlation between emerging research trends and the different influencing factors.","PeriodicalId":313042,"journal":{"name":"2022 7th International Conference on Data Science and Machine Learning Applications (CDMA)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Research Trends using Dynamic Topic Modeling\",\"authors\":\"Amal Alazba, Leina Abouhagar, Randah Al-Harbi, Hamdi A. Al-Jamimi, Abdullah Sultan, Rabah A. Al-Zaidy\",\"doi\":\"10.1109/CDMA54072.2022.00031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovering trends in research areas is helpful for researchers in finding the recent advances in a field or area of research. In addition, policy makers in universities can utilize this information in decision making. Different factors have direct influence on the growth and evolution of research topics. These include the funding, community interest and national needs. In this paper, we propose an unsupervised Dynamic Topic Modeling approach to discover and analyze the most trending research topics in a set of research areas using a collection of publications from the corresponding research areas. Furthermore, we study the correlation between emerging research trends and the different influencing factors.\",\"PeriodicalId\":313042,\"journal\":{\"name\":\"2022 7th International Conference on Data Science and Machine Learning Applications (CDMA)\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Data Science and Machine Learning Applications (CDMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDMA54072.2022.00031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Data Science and Machine Learning Applications (CDMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDMA54072.2022.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

发现研究领域的趋势有助于研究人员发现一个领域或研究领域的最新进展。此外,大学的政策制定者可以利用这些信息进行决策。不同的因素对研究课题的成长和演变有着直接的影响。这些因素包括资金、社区利益和国家需求。在本文中,我们提出了一种无监督动态主题建模方法,使用来自相应研究领域的出版物集合来发现和分析一组研究领域中最热门的研究主题。此外,我们还研究了新兴研究趋势与不同影响因素之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Research Trends using Dynamic Topic Modeling
Discovering trends in research areas is helpful for researchers in finding the recent advances in a field or area of research. In addition, policy makers in universities can utilize this information in decision making. Different factors have direct influence on the growth and evolution of research topics. These include the funding, community interest and national needs. In this paper, we propose an unsupervised Dynamic Topic Modeling approach to discover and analyze the most trending research topics in a set of research areas using a collection of publications from the corresponding research areas. Furthermore, we study the correlation between emerging research trends and the different influencing factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Accuracy Performance of Semantic Segmentation Network with Different Backbones On the Capabilities of Quantum Machine Learning Machine Learning Algorithms for Detection of Noisy/Artifact-Corrupted Epochs of Visual Oddball Paradigm ERP Data Deep Learning for Classifying of White Blood Cancer Machine Learning Based Preemptive Diagnosis of Lung Cancer Using Clinical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1