{"title":"超导量子器件拼接表面码的合成框架","authors":"Anbang Wu, Gushu Li, Hezi Zhang, G. Guerreschi, Yufei Ding, Yuan Xie","doi":"10.1145/3470496.3527381","DOIUrl":null,"url":null,"abstract":"Quantum error correction (QEC) is the central building block of fault-tolerant quantum computation but the design of QEC codes may not always match the underlying hardware. To tackle the discrepancy between the quantum hardware and QEC codes, we propose a synthesis framework that can implement and optimize the surface code onto superconducting quantum architectures. In particular, we divide the surface code synthesis into three key subroutines. The first two optimize the mapping of data qubits and ancillary qubits including syndrome qubits on the connectivity-constrained superconducting architecture, while the last subroutine optimizes the surface code execution by rescheduling syndrome measurements. Our experiments on mainstream superconducting architectures demonstrate the effectiveness of the proposed synthesis framework. Especially, the surface codes synthesized by the proposed automatic synthesis framework can achieve comparable or even better error correction capability than manually designed QEC codes.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A synthesis framework for stitching surface code with superconducting quantum devices\",\"authors\":\"Anbang Wu, Gushu Li, Hezi Zhang, G. Guerreschi, Yufei Ding, Yuan Xie\",\"doi\":\"10.1145/3470496.3527381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum error correction (QEC) is the central building block of fault-tolerant quantum computation but the design of QEC codes may not always match the underlying hardware. To tackle the discrepancy between the quantum hardware and QEC codes, we propose a synthesis framework that can implement and optimize the surface code onto superconducting quantum architectures. In particular, we divide the surface code synthesis into three key subroutines. The first two optimize the mapping of data qubits and ancillary qubits including syndrome qubits on the connectivity-constrained superconducting architecture, while the last subroutine optimizes the surface code execution by rescheduling syndrome measurements. Our experiments on mainstream superconducting architectures demonstrate the effectiveness of the proposed synthesis framework. Especially, the surface codes synthesized by the proposed automatic synthesis framework can achieve comparable or even better error correction capability than manually designed QEC codes.\",\"PeriodicalId\":337932,\"journal\":{\"name\":\"Proceedings of the 49th Annual International Symposium on Computer Architecture\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3470496.3527381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A synthesis framework for stitching surface code with superconducting quantum devices
Quantum error correction (QEC) is the central building block of fault-tolerant quantum computation but the design of QEC codes may not always match the underlying hardware. To tackle the discrepancy between the quantum hardware and QEC codes, we propose a synthesis framework that can implement and optimize the surface code onto superconducting quantum architectures. In particular, we divide the surface code synthesis into three key subroutines. The first two optimize the mapping of data qubits and ancillary qubits including syndrome qubits on the connectivity-constrained superconducting architecture, while the last subroutine optimizes the surface code execution by rescheduling syndrome measurements. Our experiments on mainstream superconducting architectures demonstrate the effectiveness of the proposed synthesis framework. Especially, the surface codes synthesized by the proposed automatic synthesis framework can achieve comparable or even better error correction capability than manually designed QEC codes.