基于高阶隐马尔可夫模型的认知无线电信道状态预测

Zhe Chen, R. Qiu
{"title":"基于高阶隐马尔可夫模型的认知无线电信道状态预测","authors":"Zhe Chen, R. Qiu","doi":"10.1109/SECON.2010.5453870","DOIUrl":null,"url":null,"abstract":"Spectrum sensing detects the availability of the radio frequency spectrum, which is essential and vital to cognitive radio. Traditional techniques for spectrum sensing fail to take the latency between spectrum sensing and data transmission into consideration. However, such latency does exist in hardware implementation. Prediction can be utilized to diminish the negative effect of such latency. In this paper, this latency is illustrated, and an approach for prediction of channel state using higher-order hidden Markov model (HMM) is proposed. The predicted channel states are output together with corresponding likelihood probabilities that are helpful to subsequent decision making. Wi-Fi signals have been recorded using a latest advanced ultra-performance digital phosphor oscilloscope (DPO), which are employed to evaluate the performance of the proposed approach. Experimental results show that the proposed approach for prediction of channel state is effective. The proposed approach for prediction of channel state can be used together with traditional spectrum sensing techniques for spectrum sensing with the latency taken into consideration. And it can also be utilized to provide predictive information to upper-level modules of cognitive radio.","PeriodicalId":286940,"journal":{"name":"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"Prediction of channel state for cognitive radio using higher-order hidden Markov model\",\"authors\":\"Zhe Chen, R. Qiu\",\"doi\":\"10.1109/SECON.2010.5453870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectrum sensing detects the availability of the radio frequency spectrum, which is essential and vital to cognitive radio. Traditional techniques for spectrum sensing fail to take the latency between spectrum sensing and data transmission into consideration. However, such latency does exist in hardware implementation. Prediction can be utilized to diminish the negative effect of such latency. In this paper, this latency is illustrated, and an approach for prediction of channel state using higher-order hidden Markov model (HMM) is proposed. The predicted channel states are output together with corresponding likelihood probabilities that are helpful to subsequent decision making. Wi-Fi signals have been recorded using a latest advanced ultra-performance digital phosphor oscilloscope (DPO), which are employed to evaluate the performance of the proposed approach. Experimental results show that the proposed approach for prediction of channel state is effective. The proposed approach for prediction of channel state can be used together with traditional spectrum sensing techniques for spectrum sensing with the latency taken into consideration. And it can also be utilized to provide predictive information to upper-level modules of cognitive radio.\",\"PeriodicalId\":286940,\"journal\":{\"name\":\"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2010.5453870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2010.5453870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

摘要

频谱感知检测无线电频谱的可用性,这对认知无线电至关重要。传统的频谱感知技术没有考虑到频谱感知与数据传输之间的时延。然而,这种延迟在硬件实现中确实存在。可以利用预测来减少这种延迟的负面影响。本文分析了这种延迟,并提出了一种利用高阶隐马尔可夫模型(HMM)预测信道状态的方法。预测的通道状态连同相应的可能性概率一起输出,这有助于后续的决策。Wi-Fi信号已使用最新先进的超性能数字荧光粉示波器(DPO)进行记录,并用于评估所提出方法的性能。实验结果表明,该方法对信道状态的预测是有效的。提出的信道状态预测方法可以与传统的频谱感知技术结合使用,同时考虑时延。它还可以为认知无线电的上层模块提供预测信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of channel state for cognitive radio using higher-order hidden Markov model
Spectrum sensing detects the availability of the radio frequency spectrum, which is essential and vital to cognitive radio. Traditional techniques for spectrum sensing fail to take the latency between spectrum sensing and data transmission into consideration. However, such latency does exist in hardware implementation. Prediction can be utilized to diminish the negative effect of such latency. In this paper, this latency is illustrated, and an approach for prediction of channel state using higher-order hidden Markov model (HMM) is proposed. The predicted channel states are output together with corresponding likelihood probabilities that are helpful to subsequent decision making. Wi-Fi signals have been recorded using a latest advanced ultra-performance digital phosphor oscilloscope (DPO), which are employed to evaluate the performance of the proposed approach. Experimental results show that the proposed approach for prediction of channel state is effective. The proposed approach for prediction of channel state can be used together with traditional spectrum sensing techniques for spectrum sensing with the latency taken into consideration. And it can also be utilized to provide predictive information to upper-level modules of cognitive radio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensor information framework: Using workflow to integrate distributed sensor services PowerMon: Fine-grained and integrated power monitoring for commodity computer systems Acquisition and analysis of Terahertz Time Domain imaging and sensing Using aspects for testing nonfunctional requirements in object-oriented systems Wafer bonding technique based GaN/Quantum Dots/GaN system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1