哈巴罗夫斯克建筑垃圾处置集聚区地质生态条件研究

V. Kulakov, V. E. Pasichnikov
{"title":"哈巴罗夫斯克建筑垃圾处置集聚区地质生态条件研究","authors":"V. Kulakov, V. E. Pasichnikov","doi":"10.21285/2686-9993-2022-45-3-275-284","DOIUrl":null,"url":null,"abstract":"This research is aimed at the geoecological assessment of the territory of the Khabarovsk agglomeration in terms of location possibility of construction and demolition waste or recycling of the latter, as well as the environmental impact of the waste. The annual volume of construction waste generation in Khabarovsk is 407.5 thousand tons (326.9 thousand m3). All waste from the construction sector of the Khabarovsk agglomeration is sent to landfills. The study territory distinguishes two areas: the one of the flood plain and above-floodplain terraces of the Amur river in the western part, which is flooded in the periods of high and catastrophic floods and features unfavorable geoecological conditions, and the area on the right bank of the Amur river in the eastern part of the territory with urban development where the groundwater levels exceed 2 m. In the course of the study, the authors identified the potential locations of the construction waste recycling complex and considered the possibility of arranging a site for temporary storage of raw materials having given the rationale for this choice. The methods applicable in the field of waste recycling under the formation of the construction and demolition waste processing industry are described. The potential of using waste as material resources as well as the environmental aspects of waste recycling in the form of building materials are evaluated. It is noted that by 2030, the carbon footprint will be 116.8 thousand tons of carbon dioxide as a result of waste disposal at municipal solid waste landfills. To reduce the carbon footprint (carbon dioxide emissions) during the construction works involving concrete and bituminous concrete it is justified the use of processed aggregates based on recycled crushed stone. The sites favorable for the placement of construction waste recycling enterprises have been identified during the survey of the city. They are located outside the existing and prospective urban and industrial development, as well as outside the zones of specially protected natural areas.","PeriodicalId":128080,"journal":{"name":"Earth sciences and subsoil use","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geoecological conditions of the Khabarovsk agglomeration for construction waste disposal\",\"authors\":\"V. Kulakov, V. E. Pasichnikov\",\"doi\":\"10.21285/2686-9993-2022-45-3-275-284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research is aimed at the geoecological assessment of the territory of the Khabarovsk agglomeration in terms of location possibility of construction and demolition waste or recycling of the latter, as well as the environmental impact of the waste. The annual volume of construction waste generation in Khabarovsk is 407.5 thousand tons (326.9 thousand m3). All waste from the construction sector of the Khabarovsk agglomeration is sent to landfills. The study territory distinguishes two areas: the one of the flood plain and above-floodplain terraces of the Amur river in the western part, which is flooded in the periods of high and catastrophic floods and features unfavorable geoecological conditions, and the area on the right bank of the Amur river in the eastern part of the territory with urban development where the groundwater levels exceed 2 m. In the course of the study, the authors identified the potential locations of the construction waste recycling complex and considered the possibility of arranging a site for temporary storage of raw materials having given the rationale for this choice. The methods applicable in the field of waste recycling under the formation of the construction and demolition waste processing industry are described. The potential of using waste as material resources as well as the environmental aspects of waste recycling in the form of building materials are evaluated. It is noted that by 2030, the carbon footprint will be 116.8 thousand tons of carbon dioxide as a result of waste disposal at municipal solid waste landfills. To reduce the carbon footprint (carbon dioxide emissions) during the construction works involving concrete and bituminous concrete it is justified the use of processed aggregates based on recycled crushed stone. The sites favorable for the placement of construction waste recycling enterprises have been identified during the survey of the city. They are located outside the existing and prospective urban and industrial development, as well as outside the zones of specially protected natural areas.\",\"PeriodicalId\":128080,\"journal\":{\"name\":\"Earth sciences and subsoil use\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth sciences and subsoil use\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21285/2686-9993-2022-45-3-275-284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth sciences and subsoil use","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21285/2686-9993-2022-45-3-275-284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是对哈巴罗夫斯克集聚地区的地理生态进行评估,包括建筑和拆除废物的选址可能性或后者的回收利用,以及废物的环境影响。哈巴罗夫斯克的年建筑垃圾产生量为407.5万吨(326.9万立方米)。哈巴罗夫斯克聚集区建筑部门的所有废物都被送到垃圾填埋场。研究区域划分为两个区域:西部的阿穆尔河漫滩和漫滩上阶地,在高洪水和特大洪水时期被淹没,地质生态条件不利;东部的阿穆尔河右岸地区,城市发展,地下水位超过2 m。在研究过程中,作者确定了建筑废物回收综合设施的潜在地点,并考虑了安排一个地点临时储存原材料的可能性,并给出了这一选择的理由。阐述了在建筑垃圾处理行业形成的背景下,在垃圾回收领域适用的方法。利用废物作为材料资源的潜力以及以建筑材料的形式回收废物的环境方面进行了评价。值得注意的是,到2030年,由于在城市固体废物填埋场处理废物,碳足迹将达到11.68万吨二氧化碳。在涉及混凝土和沥青混凝土的建筑工程中,为了减少碳足迹(二氧化碳排放量),使用以回收碎石为基础的加工集料是合理的。在对城市的调查中,确定了有利于建筑垃圾回收企业安置的场地。它们位于现有的和未来的城市和工业发展之外,以及特别保护的自然区域之外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geoecological conditions of the Khabarovsk agglomeration for construction waste disposal
This research is aimed at the geoecological assessment of the territory of the Khabarovsk agglomeration in terms of location possibility of construction and demolition waste or recycling of the latter, as well as the environmental impact of the waste. The annual volume of construction waste generation in Khabarovsk is 407.5 thousand tons (326.9 thousand m3). All waste from the construction sector of the Khabarovsk agglomeration is sent to landfills. The study territory distinguishes two areas: the one of the flood plain and above-floodplain terraces of the Amur river in the western part, which is flooded in the periods of high and catastrophic floods and features unfavorable geoecological conditions, and the area on the right bank of the Amur river in the eastern part of the territory with urban development where the groundwater levels exceed 2 m. In the course of the study, the authors identified the potential locations of the construction waste recycling complex and considered the possibility of arranging a site for temporary storage of raw materials having given the rationale for this choice. The methods applicable in the field of waste recycling under the formation of the construction and demolition waste processing industry are described. The potential of using waste as material resources as well as the environmental aspects of waste recycling in the form of building materials are evaluated. It is noted that by 2030, the carbon footprint will be 116.8 thousand tons of carbon dioxide as a result of waste disposal at municipal solid waste landfills. To reduce the carbon footprint (carbon dioxide emissions) during the construction works involving concrete and bituminous concrete it is justified the use of processed aggregates based on recycled crushed stone. The sites favorable for the placement of construction waste recycling enterprises have been identified during the survey of the city. They are located outside the existing and prospective urban and industrial development, as well as outside the zones of specially protected natural areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role and significance of geological heterogeneity in the formation of limestone productivity in the Famennian stage of the South Tatar arch Petroelastic modeling of Vereiskian and Bashkirian deposits on example of an oil field in the Republic of Tatarstan Influence of heterogeneity indicators on productivity index prediction efficiency (on example of carbonate reservoir deposits in the Ural-Volga region) Petrophysical taxa of diamond deposit of Komsomolskaya kimberlite pipe (Yakutsk diamondiferous province) Using photogrammetry to determine quarry slope stability coefficient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1