Zhaohui Peng, Jun Zhang, Shan Wang, Chang-liang Wang, Li-zhen Cui
{"title":"关系型数据库关键字搜索中的关联反馈方法","authors":"Zhaohui Peng, Jun Zhang, Shan Wang, Chang-liang Wang, Li-zhen Cui","doi":"10.1109/ITIME.2009.5236323","DOIUrl":null,"url":null,"abstract":"In Keyword Search Over Relational Databases (KSORD), retrieval of user's initial query is often unsatisfying. User has to reformulate his query and execute the new query, which costs much time and effort. In this paper, a method of automatically reformulating user queries by relevance feedback is introduced, which is named VSM-RF. Aimed at the results of KSORD systems, VSM-RF adopts a ranking method based on vector space model to rank KSORD results. After the first time of retrieval, using user feedback or pseudo feedback just as user like, VSM-RF computes expansion terms based on probability and reformulates the new query using query expansion. After KSORD systems executing the new query, more relevant results are produced by the new query in the result list and presented to user. Experimental results verify this method's effectiveness.","PeriodicalId":398477,"journal":{"name":"2009 IEEE International Symposium on IT in Medicine & Education","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VSM-RF: A method of relevance feedback in Keyword Search over Relational Databases\",\"authors\":\"Zhaohui Peng, Jun Zhang, Shan Wang, Chang-liang Wang, Li-zhen Cui\",\"doi\":\"10.1109/ITIME.2009.5236323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Keyword Search Over Relational Databases (KSORD), retrieval of user's initial query is often unsatisfying. User has to reformulate his query and execute the new query, which costs much time and effort. In this paper, a method of automatically reformulating user queries by relevance feedback is introduced, which is named VSM-RF. Aimed at the results of KSORD systems, VSM-RF adopts a ranking method based on vector space model to rank KSORD results. After the first time of retrieval, using user feedback or pseudo feedback just as user like, VSM-RF computes expansion terms based on probability and reformulates the new query using query expansion. After KSORD systems executing the new query, more relevant results are produced by the new query in the result list and presented to user. Experimental results verify this method's effectiveness.\",\"PeriodicalId\":398477,\"journal\":{\"name\":\"2009 IEEE International Symposium on IT in Medicine & Education\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on IT in Medicine & Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITIME.2009.5236323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on IT in Medicine & Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITIME.2009.5236323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
VSM-RF: A method of relevance feedback in Keyword Search over Relational Databases
In Keyword Search Over Relational Databases (KSORD), retrieval of user's initial query is often unsatisfying. User has to reformulate his query and execute the new query, which costs much time and effort. In this paper, a method of automatically reformulating user queries by relevance feedback is introduced, which is named VSM-RF. Aimed at the results of KSORD systems, VSM-RF adopts a ranking method based on vector space model to rank KSORD results. After the first time of retrieval, using user feedback or pseudo feedback just as user like, VSM-RF computes expansion terms based on probability and reformulates the new query using query expansion. After KSORD systems executing the new query, more relevant results are produced by the new query in the result list and presented to user. Experimental results verify this method's effectiveness.