作为抽象符号有限自动机的感染:形式模型与应用

M. Preda, Isabella Mastroeni
{"title":"作为抽象符号有限自动机的感染:形式模型与应用","authors":"M. Preda, Isabella Mastroeni","doi":"10.1109/SPRO.2015.18","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a methodology, based on machine learning, for building a symbolic finite state automata-based model of infected systems, that expresses the interaction between the malware and the environment by combining in the same model the code and the semantics of a system and allowing to tune both the system and the malware code observation. Moreover, we show that this methodology may have several applications in the context of malware detection.","PeriodicalId":338591,"journal":{"name":"2015 IEEE/ACM 1st International Workshop on Software Protection","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Infections as Abstract Symbolic Finite Automata: Formal Model and Applications\",\"authors\":\"M. Preda, Isabella Mastroeni\",\"doi\":\"10.1109/SPRO.2015.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a methodology, based on machine learning, for building a symbolic finite state automata-based model of infected systems, that expresses the interaction between the malware and the environment by combining in the same model the code and the semantics of a system and allowing to tune both the system and the malware code observation. Moreover, we show that this methodology may have several applications in the context of malware detection.\",\"PeriodicalId\":338591,\"journal\":{\"name\":\"2015 IEEE/ACM 1st International Workshop on Software Protection\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM 1st International Workshop on Software Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPRO.2015.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 1st International Workshop on Software Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPRO.2015.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种基于机器学习的方法,用于构建基于符号有限状态自动机的受感染系统模型,该模型通过将系统的代码和语义组合在同一模型中并允许调整系统和恶意软件代码观察来表达恶意软件与环境之间的交互。此外,我们表明这种方法可能在恶意软件检测的背景下有几个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Infections as Abstract Symbolic Finite Automata: Formal Model and Applications
In this paper, we propose a methodology, based on machine learning, for building a symbolic finite state automata-based model of infected systems, that expresses the interaction between the malware and the environment by combining in the same model the code and the semantics of a system and allowing to tune both the system and the malware code observation. Moreover, we show that this methodology may have several applications in the context of malware detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Discovery of Software Attacks via Backward Reasoning Infections as Abstract Symbolic Finite Automata: Formal Model and Applications Using Virtual Machine Protections to Enhance Whitebox Cryptography Matryoshka: Strengthening Software Protection via Nested Virtual Machines Assessment of Data Obfuscation with Residue Number Coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1