H. Chehade, F. Yalaoui, L. Amodeo, Frédéric Dugardin
{"title":"缓冲规模的装配线使用洛伦兹多目标蚁群优化算法","authors":"H. Chehade, F. Yalaoui, L. Amodeo, Frédéric Dugardin","doi":"10.1109/ICMWI.2010.5647916","DOIUrl":null,"url":null,"abstract":"In this paper, a new multiobjective resolution approach is proposed for solving buffers sizing problems in assembly lines. The considered problem consists of sizing the buffers between the different stations in a line taking in consideration that the size of each buffer is bounded by a lower and an upper value. Two objectives are taken in consideration: the maximization of the throughput rate and the minimization of the total size of the buffers. The resolution method is based on a multiobjective ant colony algorithm but using the Lorenz dominance instead of the well-known Pareto dominance relationship. The Lorenz dominance relationship provides a better domination area by rejecting the solutions founded on the extreme sides of the Pareto front. The obtained results are compared with those of a classical Multiobjective Ant Colony Optimization Algorithm. For that purpose, three different measuring criteria are applied. The numerical results show the advantages and the efficiency of the Lorenz dominance.","PeriodicalId":404577,"journal":{"name":"2010 International Conference on Machine and Web Intelligence","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Buffers sizing in assembly lines using a Lorenz multiobjective ant colony optimization algorithm\",\"authors\":\"H. Chehade, F. Yalaoui, L. Amodeo, Frédéric Dugardin\",\"doi\":\"10.1109/ICMWI.2010.5647916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new multiobjective resolution approach is proposed for solving buffers sizing problems in assembly lines. The considered problem consists of sizing the buffers between the different stations in a line taking in consideration that the size of each buffer is bounded by a lower and an upper value. Two objectives are taken in consideration: the maximization of the throughput rate and the minimization of the total size of the buffers. The resolution method is based on a multiobjective ant colony algorithm but using the Lorenz dominance instead of the well-known Pareto dominance relationship. The Lorenz dominance relationship provides a better domination area by rejecting the solutions founded on the extreme sides of the Pareto front. The obtained results are compared with those of a classical Multiobjective Ant Colony Optimization Algorithm. For that purpose, three different measuring criteria are applied. The numerical results show the advantages and the efficiency of the Lorenz dominance.\",\"PeriodicalId\":404577,\"journal\":{\"name\":\"2010 International Conference on Machine and Web Intelligence\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine and Web Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMWI.2010.5647916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine and Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMWI.2010.5647916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Buffers sizing in assembly lines using a Lorenz multiobjective ant colony optimization algorithm
In this paper, a new multiobjective resolution approach is proposed for solving buffers sizing problems in assembly lines. The considered problem consists of sizing the buffers between the different stations in a line taking in consideration that the size of each buffer is bounded by a lower and an upper value. Two objectives are taken in consideration: the maximization of the throughput rate and the minimization of the total size of the buffers. The resolution method is based on a multiobjective ant colony algorithm but using the Lorenz dominance instead of the well-known Pareto dominance relationship. The Lorenz dominance relationship provides a better domination area by rejecting the solutions founded on the extreme sides of the Pareto front. The obtained results are compared with those of a classical Multiobjective Ant Colony Optimization Algorithm. For that purpose, three different measuring criteria are applied. The numerical results show the advantages and the efficiency of the Lorenz dominance.