高性能SqueezeNext for CIFAR-10

Jayan Kant Duggal, M. El-Sharkawy
{"title":"高性能SqueezeNext for CIFAR-10","authors":"Jayan Kant Duggal, M. El-Sharkawy","doi":"10.1109/NAECON46414.2019.9058217","DOIUrl":null,"url":null,"abstract":"CNNs is the foundation for deep learning and computer vision domain enabling applications such as autonomous driving, face recognition, automatic radiology image reading, etc. But, CNN is a algorithm which is memory and computationally intensive. DSE of neural networks and compression techniques have made convolution neural networks memory and computationally efficient. It improved the CNN architectures and made it more suitable to implement on real-time embedded systems. This paper proposes an efficient and a compact CNN to ameliorate the performance of existing CNN architectures. The intuition behind this proposed architecture is to supplant convolution layers with a more sophisticated block module and to develop a compact architecture with a competitive accuracy. Further, explores the bottleneck module and squeezenext basic block structure. The state-of-the-art squeezenext baseline architecture is used as a foundation to recreate and propose a high performance squeezenext architecture. The proposed architecture is further trained on the CIFAR-10 dataset from scratch. All the training and testing results are visualized with live loss and accuracy graphs. Focus of this paper is to make an adaptable and a flexible model for efficient CNN performance which can perform better with the minimum tradeoff between model accuracy, size, and speed. Finally, the conclusion is made that the performance of CNN can be improved by developing an architecture for a specific dataset. The purpose of this paper is to introduce and propose high performance squeezenext for CIFAR-10.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High Performance SqueezeNext for CIFAR-10\",\"authors\":\"Jayan Kant Duggal, M. El-Sharkawy\",\"doi\":\"10.1109/NAECON46414.2019.9058217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CNNs is the foundation for deep learning and computer vision domain enabling applications such as autonomous driving, face recognition, automatic radiology image reading, etc. But, CNN is a algorithm which is memory and computationally intensive. DSE of neural networks and compression techniques have made convolution neural networks memory and computationally efficient. It improved the CNN architectures and made it more suitable to implement on real-time embedded systems. This paper proposes an efficient and a compact CNN to ameliorate the performance of existing CNN architectures. The intuition behind this proposed architecture is to supplant convolution layers with a more sophisticated block module and to develop a compact architecture with a competitive accuracy. Further, explores the bottleneck module and squeezenext basic block structure. The state-of-the-art squeezenext baseline architecture is used as a foundation to recreate and propose a high performance squeezenext architecture. The proposed architecture is further trained on the CIFAR-10 dataset from scratch. All the training and testing results are visualized with live loss and accuracy graphs. Focus of this paper is to make an adaptable and a flexible model for efficient CNN performance which can perform better with the minimum tradeoff between model accuracy, size, and speed. Finally, the conclusion is made that the performance of CNN can be improved by developing an architecture for a specific dataset. The purpose of this paper is to introduce and propose high performance squeezenext for CIFAR-10.\",\"PeriodicalId\":193529,\"journal\":{\"name\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON46414.2019.9058217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9058217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

cnn是深度学习和计算机视觉领域应用的基础,如自动驾驶、人脸识别、自动放射图像读取等。但是,CNN是一个需要大量内存和计算的算法。神经网络的DSE和压缩技术使得卷积神经网络具有较高的内存和计算效率。改进了CNN的结构,使其更适合在实时嵌入式系统上实现。本文提出了一种高效且紧凑的CNN,以改善现有CNN架构的性能。这种架构背后的直觉是用更复杂的块模块取代卷积层,并开发具有竞争精度的紧凑架构。进一步探讨了瓶颈模块和挤压模块的基本块结构。最先进的squeezenext基线架构被用作重建和提出高性能squeezenext架构的基础。提出的架构是在CIFAR-10数据集上从零开始进一步训练的。所有的训练和测试结果都以活损和准确率图可视化。本文的重点是建立一个自适应的、灵活的模型来实现高效的CNN性能,使其在模型精度、尺寸和速度之间的权衡最小的情况下表现更好。最后得出结论:针对特定数据集开发一种架构可以提高CNN的性能。本文的目的是介绍和提出CIFAR-10的高性能压缩器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High Performance SqueezeNext for CIFAR-10
CNNs is the foundation for deep learning and computer vision domain enabling applications such as autonomous driving, face recognition, automatic radiology image reading, etc. But, CNN is a algorithm which is memory and computationally intensive. DSE of neural networks and compression techniques have made convolution neural networks memory and computationally efficient. It improved the CNN architectures and made it more suitable to implement on real-time embedded systems. This paper proposes an efficient and a compact CNN to ameliorate the performance of existing CNN architectures. The intuition behind this proposed architecture is to supplant convolution layers with a more sophisticated block module and to develop a compact architecture with a competitive accuracy. Further, explores the bottleneck module and squeezenext basic block structure. The state-of-the-art squeezenext baseline architecture is used as a foundation to recreate and propose a high performance squeezenext architecture. The proposed architecture is further trained on the CIFAR-10 dataset from scratch. All the training and testing results are visualized with live loss and accuracy graphs. Focus of this paper is to make an adaptable and a flexible model for efficient CNN performance which can perform better with the minimum tradeoff between model accuracy, size, and speed. Finally, the conclusion is made that the performance of CNN can be improved by developing an architecture for a specific dataset. The purpose of this paper is to introduce and propose high performance squeezenext for CIFAR-10.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physical Cyber-Security of SCADA Systems Cluster-Based Hungarian Approach to Task Allocation for Unmanned Aerial Vehicles Privacy Preserving Medium Access Control Protocol for wireless Body Area Sensor Networks Gaussian Beam Propagation Through Turbulent Atmosphere using Second-Order Split-Step Algorithm A generalized equivalent circuit model for large-scale battery packs with cell-to-cell variation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1