基于sdn的LTE网络中的回程、QoS和信道感知负载均衡优化

F. Khan, M. Portmann
{"title":"基于sdn的LTE网络中的回程、QoS和信道感知负载均衡优化","authors":"F. Khan, M. Portmann","doi":"10.1109/ICSPCS.2017.8270489","DOIUrl":null,"url":null,"abstract":"Future cellular networks utilizes complex network technologies that makes it hard to achieve fine-grained traffic control. Moreover dynamic channel conditions alongwith finite backhaul capacity, limits the desired quality of service (QoS) objectives. This work aims to design a framework for software-defined cellular networks (SDCN) and suggests channel and QoS-aware load balancing procedures that jointly consider both access and back-haul networks. Based on the overall access and backhaul load information we first formulate optimization problems for both QoS and non-QoS users, respectively, considering their specific objectives. Then a realistic algorithm is proposed consisting of users scheduling, load estimation, handover decision, admission, and rate control procedures. To achieve optimal control of backhaul and access network segments in a timely efficient manner, the procedures are envisioned to run in a distributed fashion. Using our system-level SDN-LTE testbed developed in the network simulator (NS3), the proposed system is evaluated and compared with other state-of-the-art cell association algorithms that either consider the fairness in load distribution factor or just maximizes the end user rate while ignoring the load metric.","PeriodicalId":268205,"journal":{"name":"2017 11th International Conference on Signal Processing and Communication Systems (ICSPCS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Backhaul, QoS, and channel-aware load balancing optimization in SDN-based LTE networks\",\"authors\":\"F. Khan, M. Portmann\",\"doi\":\"10.1109/ICSPCS.2017.8270489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future cellular networks utilizes complex network technologies that makes it hard to achieve fine-grained traffic control. Moreover dynamic channel conditions alongwith finite backhaul capacity, limits the desired quality of service (QoS) objectives. This work aims to design a framework for software-defined cellular networks (SDCN) and suggests channel and QoS-aware load balancing procedures that jointly consider both access and back-haul networks. Based on the overall access and backhaul load information we first formulate optimization problems for both QoS and non-QoS users, respectively, considering their specific objectives. Then a realistic algorithm is proposed consisting of users scheduling, load estimation, handover decision, admission, and rate control procedures. To achieve optimal control of backhaul and access network segments in a timely efficient manner, the procedures are envisioned to run in a distributed fashion. Using our system-level SDN-LTE testbed developed in the network simulator (NS3), the proposed system is evaluated and compared with other state-of-the-art cell association algorithms that either consider the fairness in load distribution factor or just maximizes the end user rate while ignoring the load metric.\",\"PeriodicalId\":268205,\"journal\":{\"name\":\"2017 11th International Conference on Signal Processing and Communication Systems (ICSPCS)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 11th International Conference on Signal Processing and Communication Systems (ICSPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPCS.2017.8270489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 11th International Conference on Signal Processing and Communication Systems (ICSPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCS.2017.8270489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

未来的蜂窝网络采用复杂的网络技术,难以实现细粒度的流量控制。此外,动态信道条件以及有限的回程容量限制了期望的服务质量(QoS)目标。这项工作旨在为软件定义蜂窝网络(SDCN)设计一个框架,并建议通道和qos感知负载平衡程序,共同考虑接入和回程网络。基于总体接入和回程负载信息,我们首先分别针对QoS用户和非QoS用户,考虑其具体目标,制定优化问题。然后提出了一种由用户调度、负荷估计、切换决策、接纳和速率控制等步骤组成的现实算法。为了及时有效地实现回程和接入网段的最优控制,设想这些程序以分布式方式运行。使用我们在网络模拟器(NS3)中开发的系统级SDN-LTE测试平台,对所提出的系统进行了评估,并与其他最先进的小区关联算法进行了比较,这些算法要么考虑负载分配因素的公平性,要么只是最大化最终用户速率而忽略负载度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Backhaul, QoS, and channel-aware load balancing optimization in SDN-based LTE networks
Future cellular networks utilizes complex network technologies that makes it hard to achieve fine-grained traffic control. Moreover dynamic channel conditions alongwith finite backhaul capacity, limits the desired quality of service (QoS) objectives. This work aims to design a framework for software-defined cellular networks (SDCN) and suggests channel and QoS-aware load balancing procedures that jointly consider both access and back-haul networks. Based on the overall access and backhaul load information we first formulate optimization problems for both QoS and non-QoS users, respectively, considering their specific objectives. Then a realistic algorithm is proposed consisting of users scheduling, load estimation, handover decision, admission, and rate control procedures. To achieve optimal control of backhaul and access network segments in a timely efficient manner, the procedures are envisioned to run in a distributed fashion. Using our system-level SDN-LTE testbed developed in the network simulator (NS3), the proposed system is evaluated and compared with other state-of-the-art cell association algorithms that either consider the fairness in load distribution factor or just maximizes the end user rate while ignoring the load metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Frequency offset tolerant demodulation for low data rate and narrowband wireless sensor node Multi-channel speech enhancement in driving environment Dual window selective median switching filter SAR video generation of MIMO video SAR with beat frequency division FMCW Receiver cooperative MIMO-OFDM capacity with quantization error and spatial correlation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1