{"title":"风冷电激同步电机连续功率曲线的计算","authors":"B. Berweiler, P. Frey, B. Ponick","doi":"10.1109/ICELMACH.2018.8507261","DOIUrl":null,"url":null,"abstract":"In this paper, a thermal model for the rotor of a salient pole synchronous machine is developed. Due to air flow through the active part of the electrical machine, a direct cooling of the field winding is achieved. The calculation of the thermal resistance between coil sides and cooling fluid is presented as well as a homogenization approach for simplifying the actual distribution of conductors and insulation material. The presented lumped parameter model is used to calculate the continuous power characteristics of an example machine.","PeriodicalId":292261,"journal":{"name":"2018 XIII International Conference on Electrical Machines (ICEM)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Calculation of Continuous Power Curves for Electrically Excited Synchronous Machines with Air Cooling\",\"authors\":\"B. Berweiler, P. Frey, B. Ponick\",\"doi\":\"10.1109/ICELMACH.2018.8507261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a thermal model for the rotor of a salient pole synchronous machine is developed. Due to air flow through the active part of the electrical machine, a direct cooling of the field winding is achieved. The calculation of the thermal resistance between coil sides and cooling fluid is presented as well as a homogenization approach for simplifying the actual distribution of conductors and insulation material. The presented lumped parameter model is used to calculate the continuous power characteristics of an example machine.\",\"PeriodicalId\":292261,\"journal\":{\"name\":\"2018 XIII International Conference on Electrical Machines (ICEM)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 XIII International Conference on Electrical Machines (ICEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICELMACH.2018.8507261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 XIII International Conference on Electrical Machines (ICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICELMACH.2018.8507261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Calculation of Continuous Power Curves for Electrically Excited Synchronous Machines with Air Cooling
In this paper, a thermal model for the rotor of a salient pole synchronous machine is developed. Due to air flow through the active part of the electrical machine, a direct cooling of the field winding is achieved. The calculation of the thermal resistance between coil sides and cooling fluid is presented as well as a homogenization approach for simplifying the actual distribution of conductors and insulation material. The presented lumped parameter model is used to calculate the continuous power characteristics of an example machine.