基于VBEM加权高斯混合分布模型的风电概率特性研究

T. Gao, Xiaoying Zhang, Wei Chen, Kun Wang
{"title":"基于VBEM加权高斯混合分布模型的风电概率特性研究","authors":"T. Gao, Xiaoying Zhang, Wei Chen, Kun Wang","doi":"10.1109/CIEEC.2018.8745812","DOIUrl":null,"url":null,"abstract":"In order to quantitatively analyze the probability distribution characteristics of wind power, this paper is based on the Weighted Gaussian Mixture Distribution (WGMD) model fitting the active power probability distribution of wind power field and a single wind turbine at the same time scale, and estimates the parameters of WGMD model with Variational Bayesian Expectation Maximization (VBEM) algorithm, and uses the Sum of Squares due to Error(SSE), the Root Mean Squared Error(RMSE), Adjusted R-Square (ARS) and other indicators to quantify numerically the fitting effect. Finally, the fitting effects of WGMD model, Weibull model and normal distribution are compared by the evaluation indicators, and the validity and feasibility of the proposed method are verified.","PeriodicalId":329285,"journal":{"name":"2018 IEEE 2nd International Electrical and Energy Conference (CIEEC)","volume":"735 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Wind Power Probabilistic Characteristics Based on VBEM Weighted Gaussian Mixture Distribution Model\",\"authors\":\"T. Gao, Xiaoying Zhang, Wei Chen, Kun Wang\",\"doi\":\"10.1109/CIEEC.2018.8745812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to quantitatively analyze the probability distribution characteristics of wind power, this paper is based on the Weighted Gaussian Mixture Distribution (WGMD) model fitting the active power probability distribution of wind power field and a single wind turbine at the same time scale, and estimates the parameters of WGMD model with Variational Bayesian Expectation Maximization (VBEM) algorithm, and uses the Sum of Squares due to Error(SSE), the Root Mean Squared Error(RMSE), Adjusted R-Square (ARS) and other indicators to quantify numerically the fitting effect. Finally, the fitting effects of WGMD model, Weibull model and normal distribution are compared by the evaluation indicators, and the validity and feasibility of the proposed method are verified.\",\"PeriodicalId\":329285,\"journal\":{\"name\":\"2018 IEEE 2nd International Electrical and Energy Conference (CIEEC)\",\"volume\":\"735 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 2nd International Electrical and Energy Conference (CIEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIEEC.2018.8745812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 2nd International Electrical and Energy Conference (CIEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEEC.2018.8745812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了定量分析风电的概率分布特征,本文基于加权高斯混合分布(Weighted Gaussian Mixture distribution, WGMD)模型拟合风电场和单台风机在同一时间尺度上的有功功率概率分布,并采用变分贝叶斯期望最大化(VBEM)算法对WGMD模型的参数进行估计,采用误差平方根和(SSE)、均方根误差(RMSE)、调整r方(ARS)等指标,数值量化拟合效果。最后,通过评价指标对比WGMD模型、威布尔模型和正态分布的拟合效果,验证了所提方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Wind Power Probabilistic Characteristics Based on VBEM Weighted Gaussian Mixture Distribution Model
In order to quantitatively analyze the probability distribution characteristics of wind power, this paper is based on the Weighted Gaussian Mixture Distribution (WGMD) model fitting the active power probability distribution of wind power field and a single wind turbine at the same time scale, and estimates the parameters of WGMD model with Variational Bayesian Expectation Maximization (VBEM) algorithm, and uses the Sum of Squares due to Error(SSE), the Root Mean Squared Error(RMSE), Adjusted R-Square (ARS) and other indicators to quantify numerically the fitting effect. Finally, the fitting effects of WGMD model, Weibull model and normal distribution are compared by the evaluation indicators, and the validity and feasibility of the proposed method are verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimum reflux power control of bidirectional DC-DC converter based on dual phase shifting A Wind Speed Simulation Approach Based on Markov Sequence Model and Archimedean Copula Augmented State Estimation Method for Fault Location Based on On-line Parameter Identification of PMU Measurement Data Service Restoration Using Different Types of DGs Considering Dynamic Characteristics Comparison and Data Conversion of PSD-BPA and PSS/NETOMAC Steady and Dynamic Models For Power Flow and Transient Stability Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1