基于动态边界策略的象棋评价函数的进化优化

Hallam Nasreddine, Hendra Poh, G. Kendall
{"title":"基于动态边界策略的象棋评价函数的进化优化","authors":"Hallam Nasreddine, Hendra Poh, G. Kendall","doi":"10.1109/ICCIS.2006.252366","DOIUrl":null,"url":null,"abstract":"One of the effective ways of optimising the evaluation function of a chess game is by tuning each of its parameters. Evolutionary algorithms have become an appropriate choice as optimisers. In the past works related to this domain, the values of the parameters are within a fixed boundary which means that no matter how the recombination and mutation operators are applied, the value of a given parameter cannot go beyond its corresponding interval. In this paper, we propose a new strategy called \"dynamic boundary strategy\" where the boundaries of the interval of each parameter are dynamic. A real-coded evolutionary algorithm that incorporates this strategy and uses the polynomial mutation as its main exploitative tool is implemented. The effectiveness of the proposed strategy is tested by competing our program against a popular commercial chess software. Our chess program has shown an autonomous improvement in performance after learning for hundreds of generations","PeriodicalId":296028,"journal":{"name":"2006 IEEE Conference on Cybernetics and Intelligent Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Using an Evolutionary Algorithm for the Tuning of a Chess Evaluation Function Based on a Dynamic Boundary Strategy\",\"authors\":\"Hallam Nasreddine, Hendra Poh, G. Kendall\",\"doi\":\"10.1109/ICCIS.2006.252366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the effective ways of optimising the evaluation function of a chess game is by tuning each of its parameters. Evolutionary algorithms have become an appropriate choice as optimisers. In the past works related to this domain, the values of the parameters are within a fixed boundary which means that no matter how the recombination and mutation operators are applied, the value of a given parameter cannot go beyond its corresponding interval. In this paper, we propose a new strategy called \\\"dynamic boundary strategy\\\" where the boundaries of the interval of each parameter are dynamic. A real-coded evolutionary algorithm that incorporates this strategy and uses the polynomial mutation as its main exploitative tool is implemented. The effectiveness of the proposed strategy is tested by competing our program against a popular commercial chess software. Our chess program has shown an autonomous improvement in performance after learning for hundreds of generations\",\"PeriodicalId\":296028,\"journal\":{\"name\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2006.252366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2006.252366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

优化棋局评估函数的有效方法之一是调整其每个参数。进化算法已经成为优化器的合适选择。在过去与该领域相关的工作中,参数的值都在一个固定的边界内,这意味着无论如何应用重组和突变算子,给定参数的值都不能超出其对应的区间。在本文中,我们提出了一种新的策略,称为“动态边界策略”,其中每个参数区间的边界是动态的。实现了一种结合该策略并以多项式突变为主要利用工具的实编码进化算法。通过将我们的程序与一个流行的商业象棋软件进行竞争,测试了所提出策略的有效性。经过数百代人的学习,我们的国际象棋程序表现出了自主的进步
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using an Evolutionary Algorithm for the Tuning of a Chess Evaluation Function Based on a Dynamic Boundary Strategy
One of the effective ways of optimising the evaluation function of a chess game is by tuning each of its parameters. Evolutionary algorithms have become an appropriate choice as optimisers. In the past works related to this domain, the values of the parameters are within a fixed boundary which means that no matter how the recombination and mutation operators are applied, the value of a given parameter cannot go beyond its corresponding interval. In this paper, we propose a new strategy called "dynamic boundary strategy" where the boundaries of the interval of each parameter are dynamic. A real-coded evolutionary algorithm that incorporates this strategy and uses the polynomial mutation as its main exploitative tool is implemented. The effectiveness of the proposed strategy is tested by competing our program against a popular commercial chess software. Our chess program has shown an autonomous improvement in performance after learning for hundreds of generations
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-layer Control Strategy of Dynamics Control System of Vehicle A Fuzzy Multiple Critera Decision Making Method Gait Recognition Considering Directions of Walking Nonlinear Diffusion Driven by Local Features for Image Denoising Designing of an Adaptive Adcock Array and Reducing the Effects of Other Transmitters, Unwanted Reflections and Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1