基于眼头姿态深度特征融合的多层次睡意检测

Fang Ye, Shunxin Li, Xin Yuan, Longfei Li
{"title":"基于眼头姿态深度特征融合的多层次睡意检测","authors":"Fang Ye, Shunxin Li, Xin Yuan, Longfei Li","doi":"10.1109/PIC53636.2021.9687063","DOIUrl":null,"url":null,"abstract":"Drowsiness detection is a significant problem, most existing non-intrusive methods estimate drowsiness only by single images, without leveraging the temporal information available in the frame sequence. The lack of temporal information leads to the inability of drowsiness detection to indicate consecutive behaviors. To this end, we present a drowsiness detection method, which takes into account both eye and head pose deep feature representation by conducting feature fusion. Then, the fused feature is fed into the LSTM (Long Short-Term Memory) network to enhance the accuracy of the drowsiness detection model through temporal information. The experimental results on the NHTU-DDD dataset and the self-constructed dataset show that the proposed method outperforms six existing advanced approaches.","PeriodicalId":297239,"journal":{"name":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Level Drowsiness Detection Based on Deep Feature Fusion of Eye and Head Pose\",\"authors\":\"Fang Ye, Shunxin Li, Xin Yuan, Longfei Li\",\"doi\":\"10.1109/PIC53636.2021.9687063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drowsiness detection is a significant problem, most existing non-intrusive methods estimate drowsiness only by single images, without leveraging the temporal information available in the frame sequence. The lack of temporal information leads to the inability of drowsiness detection to indicate consecutive behaviors. To this end, we present a drowsiness detection method, which takes into account both eye and head pose deep feature representation by conducting feature fusion. Then, the fused feature is fed into the LSTM (Long Short-Term Memory) network to enhance the accuracy of the drowsiness detection model through temporal information. The experimental results on the NHTU-DDD dataset and the self-constructed dataset show that the proposed method outperforms six existing advanced approaches.\",\"PeriodicalId\":297239,\"journal\":{\"name\":\"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC53636.2021.9687063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC53636.2021.9687063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

睡意检测是一个重要的问题,大多数现有的非侵入性方法只能通过单个图像来估计睡意,而没有利用帧序列中可用的时间信息。时间信息的缺乏导致睡意检测无法指示连续的行为。为此,我们提出了一种通过特征融合同时考虑眼睛和头部姿态深度特征表示的困倦检测方法。然后,将融合后的特征输入到LSTM(长短期记忆)网络中,通过时间信息增强睡意检测模型的准确性。在NHTU-DDD数据集和自构建数据集上的实验结果表明,该方法优于现有的六种先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Level Drowsiness Detection Based on Deep Feature Fusion of Eye and Head Pose
Drowsiness detection is a significant problem, most existing non-intrusive methods estimate drowsiness only by single images, without leveraging the temporal information available in the frame sequence. The lack of temporal information leads to the inability of drowsiness detection to indicate consecutive behaviors. To this end, we present a drowsiness detection method, which takes into account both eye and head pose deep feature representation by conducting feature fusion. Then, the fused feature is fed into the LSTM (Long Short-Term Memory) network to enhance the accuracy of the drowsiness detection model through temporal information. The experimental results on the NHTU-DDD dataset and the self-constructed dataset show that the proposed method outperforms six existing advanced approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Construction of Learning Diagnosis and Resources Recommendation System Based on Knowledge Graph Classification of Masonry Bricks Using Convolutional Neural Networks – a Case Study in a University-Industry Collaboration Project Optimal Scale Combinations Selection for Incomplete Generalized Multi-scale Decision Systems Application of Improved YOLOV4 in Intelligent Driving Scenarios Research on Hierarchical Clustering Undersampling and Random Forest Fusion Classification Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1