构造随机过程隐马尔可夫模型的启发式技术

M. Gavrikov, Anna Y. Mezentseva, R. Sinetsky
{"title":"构造随机过程隐马尔可夫模型的启发式技术","authors":"M. Gavrikov, Anna Y. Mezentseva, R. Sinetsky","doi":"10.1109/SmartIndustryCon57312.2023.10110792","DOIUrl":null,"url":null,"abstract":"Three interrelated heuristic techniques for setting the parameters of hidden Markov models for implementation in pattern recognition algorithms of stochastic processes recorded in the form of sequences of observations are proposed. The techniques make it possible to obtain working models for a small number of training implementations. The first two techniques include the stage of preliminary adjustment of the initial parameters of the model using a priori data and the training stage using the Baum-Welch algorithm. At both stages, an additional procedure for adjusting the model parameters is used, which makes it possible to eliminate numerical problems when they are implemented in recognition algorithms. The third technique implements the procedure of weighted averaging of the parameters of hidden Markov models obtained by the first two techniques. The results of experimental testing of the techniques are presented, illustrating the quality of the resulting hidden Markov models used in the algorithm for pattern recognition of stochastic processes.","PeriodicalId":157877,"journal":{"name":"2023 International Russian Smart Industry Conference (SmartIndustryCon)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Heuristic Techniques for Constructing Hidden Markov Models of Stochastic Processes\",\"authors\":\"M. Gavrikov, Anna Y. Mezentseva, R. Sinetsky\",\"doi\":\"10.1109/SmartIndustryCon57312.2023.10110792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three interrelated heuristic techniques for setting the parameters of hidden Markov models for implementation in pattern recognition algorithms of stochastic processes recorded in the form of sequences of observations are proposed. The techniques make it possible to obtain working models for a small number of training implementations. The first two techniques include the stage of preliminary adjustment of the initial parameters of the model using a priori data and the training stage using the Baum-Welch algorithm. At both stages, an additional procedure for adjusting the model parameters is used, which makes it possible to eliminate numerical problems when they are implemented in recognition algorithms. The third technique implements the procedure of weighted averaging of the parameters of hidden Markov models obtained by the first two techniques. The results of experimental testing of the techniques are presented, illustrating the quality of the resulting hidden Markov models used in the algorithm for pattern recognition of stochastic processes.\",\"PeriodicalId\":157877,\"journal\":{\"name\":\"2023 International Russian Smart Industry Conference (SmartIndustryCon)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Russian Smart Industry Conference (SmartIndustryCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartIndustryCon57312.2023.10110792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Russian Smart Industry Conference (SmartIndustryCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIndustryCon57312.2023.10110792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了三种相互关联的启发式技术,用于设置隐马尔可夫模型的参数,以实现以观测序列形式记录的随机过程的模式识别算法。这些技术使获得少量训练实现的工作模型成为可能。前两种技术包括使用先验数据对模型初始参数进行初步调整的阶段和使用Baum-Welch算法的训练阶段。在这两个阶段,使用了一个额外的过程来调整模型参数,这使得在识别算法中实现数值问题时可以消除它们。第三种方法是对前两种方法得到的隐马尔可夫模型参数进行加权平均。本文给出了该技术的实验测试结果,说明了该算法用于随机过程模式识别的隐马尔可夫模型的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heuristic Techniques for Constructing Hidden Markov Models of Stochastic Processes
Three interrelated heuristic techniques for setting the parameters of hidden Markov models for implementation in pattern recognition algorithms of stochastic processes recorded in the form of sequences of observations are proposed. The techniques make it possible to obtain working models for a small number of training implementations. The first two techniques include the stage of preliminary adjustment of the initial parameters of the model using a priori data and the training stage using the Baum-Welch algorithm. At both stages, an additional procedure for adjusting the model parameters is used, which makes it possible to eliminate numerical problems when they are implemented in recognition algorithms. The third technique implements the procedure of weighted averaging of the parameters of hidden Markov models obtained by the first two techniques. The results of experimental testing of the techniques are presented, illustrating the quality of the resulting hidden Markov models used in the algorithm for pattern recognition of stochastic processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approach to Efficient Task Allocation and Cost Minimization in Collaborative Robotic Systems Modification of the Risk Potential Predicting Algorithm for Monitoring the State of the NPP Power Unit Identification of a Depressive State Among Users of the Vkontakte Social Network An Approach to Improving the Efficiency of the Database of a Large Industrial Enterprise Development of an Integrated Expert System for Distribution Network Diagnostics Based on Artificial Intelligence Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1