基于前馈神经网络的I型结构识别方法

A. Bastian, J. Gasós
{"title":"基于前馈神经网络的I型结构识别方法","authors":"A. Bastian, J. Gasós","doi":"10.1109/ICNN.1994.374757","DOIUrl":null,"url":null,"abstract":"System identification can be divided into structure identification and parameter identification. In most system identification approaches the structure is presumed and only a parameter identification is performed to obtain the coefficients in the functional system. Unfortunately in many cases there is little knowledge about the system structure. The structure identification itself can be divided into two types: the identification of the input variables of the model and the input-output relation, here respectively named structure identification type I and type II. In this paper a black-box structure identification type I approach, using a feedforward neural network in combination with the regularity criterion in GMDH (group method of data handling) and a novel identification algorithm, is proposed.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A type I structure identification approach using feedforward neural networks\",\"authors\":\"A. Bastian, J. Gasós\",\"doi\":\"10.1109/ICNN.1994.374757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"System identification can be divided into structure identification and parameter identification. In most system identification approaches the structure is presumed and only a parameter identification is performed to obtain the coefficients in the functional system. Unfortunately in many cases there is little knowledge about the system structure. The structure identification itself can be divided into two types: the identification of the input variables of the model and the input-output relation, here respectively named structure identification type I and type II. In this paper a black-box structure identification type I approach, using a feedforward neural network in combination with the regularity criterion in GMDH (group method of data handling) and a novel identification algorithm, is proposed.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

系统辨识可分为结构辨识和参数辨识。在大多数系统辨识方法中,结构是假定的,只进行参数辨识来获得功能系统的系数。不幸的是,在许多情况下,人们对系统结构知之甚少。结构识别本身可以分为两种类型:模型输入变量的识别和输入输出关系的识别,这里分别称为结构识别类型I和类型II。本文提出了一种基于前馈神经网络的I型黑盒结构识别方法,该方法结合GMDH(数据处理群方法)中的规则准则和一种新的识别算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A type I structure identification approach using feedforward neural networks
System identification can be divided into structure identification and parameter identification. In most system identification approaches the structure is presumed and only a parameter identification is performed to obtain the coefficients in the functional system. Unfortunately in many cases there is little knowledge about the system structure. The structure identification itself can be divided into two types: the identification of the input variables of the model and the input-output relation, here respectively named structure identification type I and type II. In this paper a black-box structure identification type I approach, using a feedforward neural network in combination with the regularity criterion in GMDH (group method of data handling) and a novel identification algorithm, is proposed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1