{"title":"光伏-风能系统需求侧管理的先进策略","authors":"T. Alnejaili, S. Drid, D. Mehdi, L. Chrifi-Alaoui","doi":"10.1109/STA.2014.7086703","DOIUrl":null,"url":null,"abstract":"Demand side management is considered as the next evolution of smart grid technology, it can adjust the time and the quantity of the electricity usage either by shifting the demand during the peak hours or by moving the time of energy use to off-peak periods. The objective of this paper is to develop an efficient load side management strategy for photovoltaic-wind hybrid energy system for an isolated house. The strategy aims to control the non-critical loads of the house based on an efficient analysis of the daily load profile of the house and on the climate data. The simulation result shows the effectiveness of the proposed strategy, as it improves the energy balance of the system and eliminates the energy waste.","PeriodicalId":125957,"journal":{"name":"2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Advanced strategy of Demand-side management for photovoltaic-wind energy system\",\"authors\":\"T. Alnejaili, S. Drid, D. Mehdi, L. Chrifi-Alaoui\",\"doi\":\"10.1109/STA.2014.7086703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demand side management is considered as the next evolution of smart grid technology, it can adjust the time and the quantity of the electricity usage either by shifting the demand during the peak hours or by moving the time of energy use to off-peak periods. The objective of this paper is to develop an efficient load side management strategy for photovoltaic-wind hybrid energy system for an isolated house. The strategy aims to control the non-critical loads of the house based on an efficient analysis of the daily load profile of the house and on the climate data. The simulation result shows the effectiveness of the proposed strategy, as it improves the energy balance of the system and eliminates the energy waste.\",\"PeriodicalId\":125957,\"journal\":{\"name\":\"2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STA.2014.7086703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STA.2014.7086703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advanced strategy of Demand-side management for photovoltaic-wind energy system
Demand side management is considered as the next evolution of smart grid technology, it can adjust the time and the quantity of the electricity usage either by shifting the demand during the peak hours or by moving the time of energy use to off-peak periods. The objective of this paper is to develop an efficient load side management strategy for photovoltaic-wind hybrid energy system for an isolated house. The strategy aims to control the non-critical loads of the house based on an efficient analysis of the daily load profile of the house and on the climate data. The simulation result shows the effectiveness of the proposed strategy, as it improves the energy balance of the system and eliminates the energy waste.