{"title":"用于生命体征多普勒雷达的e波段门泵SSB混频器","authors":"Yu-Teng Chang, Hsin-Chia Lu","doi":"10.1109/RFIT.2018.8524124","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a CMOS gate-pump single side band (SSB) mixer at E-band. To improve conversion gain and efficiency, the transistors M1-M4 are biased at near class B region with the LO signal. We also carefully select LO power to get optimum conversion gain. Compared with traditional gate-pump mixer, the LO of this mixer is applied to the gate and the IF is applied to the source. This approach can assure that transistors are biased in class B region and also improve linearity. The peak conversion gain is −11.98 at 72 GHz. The measured LO-to-RF isolation is better than 35 dB and IRR is better than 29 dBc from 68 - 80 GHz. To our best knowledge, this SSB mixer has the highest IRR and good conversion gain at E-band among passive SSB mixers.","PeriodicalId":297122,"journal":{"name":"2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An E-Band Gate-Pump SSB Mixer for Vital Signs Doppler Radar\",\"authors\":\"Yu-Teng Chang, Hsin-Chia Lu\",\"doi\":\"10.1109/RFIT.2018.8524124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a CMOS gate-pump single side band (SSB) mixer at E-band. To improve conversion gain and efficiency, the transistors M1-M4 are biased at near class B region with the LO signal. We also carefully select LO power to get optimum conversion gain. Compared with traditional gate-pump mixer, the LO of this mixer is applied to the gate and the IF is applied to the source. This approach can assure that transistors are biased in class B region and also improve linearity. The peak conversion gain is −11.98 at 72 GHz. The measured LO-to-RF isolation is better than 35 dB and IRR is better than 29 dBc from 68 - 80 GHz. To our best knowledge, this SSB mixer has the highest IRR and good conversion gain at E-band among passive SSB mixers.\",\"PeriodicalId\":297122,\"journal\":{\"name\":\"2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIT.2018.8524124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIT.2018.8524124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An E-Band Gate-Pump SSB Mixer for Vital Signs Doppler Radar
In this paper, we propose a CMOS gate-pump single side band (SSB) mixer at E-band. To improve conversion gain and efficiency, the transistors M1-M4 are biased at near class B region with the LO signal. We also carefully select LO power to get optimum conversion gain. Compared with traditional gate-pump mixer, the LO of this mixer is applied to the gate and the IF is applied to the source. This approach can assure that transistors are biased in class B region and also improve linearity. The peak conversion gain is −11.98 at 72 GHz. The measured LO-to-RF isolation is better than 35 dB and IRR is better than 29 dBc from 68 - 80 GHz. To our best knowledge, this SSB mixer has the highest IRR and good conversion gain at E-band among passive SSB mixers.