{"title":"可调谐石墨烯纳米半导体:设计、制造和表征","authors":"H. Al-Mumen, F. Rao, Lixin Dong, Wen Li","doi":"10.1109/NEMS.2013.6559920","DOIUrl":null,"url":null,"abstract":"This paper reported a technique for tuning graphene semiconductor properties by introducing nanoholes into single- and few-layer graphene films. A simple nanofabrication technique has been demonstrated for making periodic nanoholes on pristine graphene in a mask-free and time-efficient manner via direct e-beam writing which was done by simply scanning the graphene area that is covered with EBL resist and then etching the scanned area by oxygen plasma. Parameters of e-beam lithography (EBL) (acceleration voltage, beam current, EBL resist thickness, and scanning area) were fine-tuned to optimize the dimensions of the nanomesh. Finally, Graphene field effect transistors were fabricated and characterized experimentally.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable graphene nanomesh semiconductor: Design, fabrication, and characterization\",\"authors\":\"H. Al-Mumen, F. Rao, Lixin Dong, Wen Li\",\"doi\":\"10.1109/NEMS.2013.6559920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reported a technique for tuning graphene semiconductor properties by introducing nanoholes into single- and few-layer graphene films. A simple nanofabrication technique has been demonstrated for making periodic nanoholes on pristine graphene in a mask-free and time-efficient manner via direct e-beam writing which was done by simply scanning the graphene area that is covered with EBL resist and then etching the scanned area by oxygen plasma. Parameters of e-beam lithography (EBL) (acceleration voltage, beam current, EBL resist thickness, and scanning area) were fine-tuned to optimize the dimensions of the nanomesh. Finally, Graphene field effect transistors were fabricated and characterized experimentally.\",\"PeriodicalId\":308928,\"journal\":{\"name\":\"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2013.6559920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2013.6559920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tunable graphene nanomesh semiconductor: Design, fabrication, and characterization
This paper reported a technique for tuning graphene semiconductor properties by introducing nanoholes into single- and few-layer graphene films. A simple nanofabrication technique has been demonstrated for making periodic nanoholes on pristine graphene in a mask-free and time-efficient manner via direct e-beam writing which was done by simply scanning the graphene area that is covered with EBL resist and then etching the scanned area by oxygen plasma. Parameters of e-beam lithography (EBL) (acceleration voltage, beam current, EBL resist thickness, and scanning area) were fine-tuned to optimize the dimensions of the nanomesh. Finally, Graphene field effect transistors were fabricated and characterized experimentally.