E-HowNet中疑问句的知识表示与语义消歧

Shu-Ling Huang, Keh-Jiann Chen
{"title":"E-HowNet中疑问句的知识表示与语义消歧","authors":"Shu-Ling Huang, Keh-Jiann Chen","doi":"10.30019/IJCLCLP.200809.0001","DOIUrl":null,"url":null,"abstract":"In order to train machines to ‘understand’ natural language, we propose a meaning representation mechanism called E-HowNet to encode lexical senses. In this paper, we take interrogatives as examples to demonstrate the mechanisms of semantic representation and composition of interrogative constructions under the framework of E-HowNet. We classify the interrogative words into five classes according to their query types, and represent each type of interrogatives with fine-grained features and operators. The process of semantic composition and the difficulties of representation, such as word sense disambiguation, are addressed. Finally, machine understanding is tested by showing how machines derive the same deep semantic structure for synonymous sentences with different surface structures.","PeriodicalId":436300,"journal":{"name":"Int. J. Comput. Linguistics Chin. Lang. Process.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Knowledge Representation and Sense Disambiguation for Interrogatives in E-HowNet\",\"authors\":\"Shu-Ling Huang, Keh-Jiann Chen\",\"doi\":\"10.30019/IJCLCLP.200809.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to train machines to ‘understand’ natural language, we propose a meaning representation mechanism called E-HowNet to encode lexical senses. In this paper, we take interrogatives as examples to demonstrate the mechanisms of semantic representation and composition of interrogative constructions under the framework of E-HowNet. We classify the interrogative words into five classes according to their query types, and represent each type of interrogatives with fine-grained features and operators. The process of semantic composition and the difficulties of representation, such as word sense disambiguation, are addressed. Finally, machine understanding is tested by showing how machines derive the same deep semantic structure for synonymous sentences with different surface structures.\",\"PeriodicalId\":436300,\"journal\":{\"name\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30019/IJCLCLP.200809.0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Linguistics Chin. Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30019/IJCLCLP.200809.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了训练机器“理解”自然语言,我们提出了一种称为E-HowNet的意义表示机制来编码词法意义。本文以疑问句为例,探讨了在E-HowNet框架下疑问句结构的语义表征和组成机制。我们根据疑问词的查询类型将疑问词分为五类,并用细粒度特征和操作符表示每一类疑问词。讨论了语义合成的过程和语义表示的难点,如词义消歧。最后,通过展示机器如何为具有不同表面结构的同义句子派生相同的深层语义结构来测试机器理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge Representation and Sense Disambiguation for Interrogatives in E-HowNet
In order to train machines to ‘understand’ natural language, we propose a meaning representation mechanism called E-HowNet to encode lexical senses. In this paper, we take interrogatives as examples to demonstrate the mechanisms of semantic representation and composition of interrogative constructions under the framework of E-HowNet. We classify the interrogative words into five classes according to their query types, and represent each type of interrogatives with fine-grained features and operators. The process of semantic composition and the difficulties of representation, such as word sense disambiguation, are addressed. Finally, machine understanding is tested by showing how machines derive the same deep semantic structure for synonymous sentences with different surface structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Cold Start Personalized Language Model Using Social Network Information Detecting and Correcting Syntactic Errors in Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars TQDL: Integrated Models for Cross-Language Document Retrieval Evaluation of TTS Systems in Intelligibility and Comprehension Tasks: a Case Study of HTS-2008 and Multisyn Synthesizers Effects of Combining Bilingual and Collocational Information on Translation of English and Chinese Verb-Noun Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1